Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
ABSTRACT: For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki[11]proved that the fixed point property(FPP) for nonexpansive mapping sand the FPP fornonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigro...
- Autores:
-
Benítez Babilonia, Luis Enrique
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30359
- Acceso en línea:
- https://hdl.handle.net/10495/30359
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768
- Palabra clave:
- Semigrupos
Semigroups
Funciones ρ-no expansivas
propiedad del punto fijo
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_dcf0ef22f868badbfb47649f93979cb1 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30359 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| dc.title.translated.spa.fl_str_mv |
Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad |
| title |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| spellingShingle |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk Semigrupos Semigroups Funciones ρ-no expansivas propiedad del punto fijo |
| title_short |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| title_full |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| title_fullStr |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| title_full_unstemmed |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| title_sort |
Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk |
| dc.creator.fl_str_mv |
Benítez Babilonia, Luis Enrique |
| dc.contributor.author.none.fl_str_mv |
Benítez Babilonia, Luis Enrique |
| dc.contributor.researchgroup.spa.fl_str_mv |
Modelación con Ecuaciones Diferenciales |
| dc.subject.lemb.none.fl_str_mv |
Semigrupos Semigroups |
| topic |
Semigrupos Semigroups Funciones ρ-no expansivas propiedad del punto fijo |
| dc.subject.proposal.spa.fl_str_mv |
Funciones ρ-no expansivas propiedad del punto fijo |
| description |
ABSTRACT: For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki[11]proved that the fixed point property(FPP) for nonexpansive mapping sand the FPP fornonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigroups defined on D, a closed convex subset of the hyperbolic metric space(D,ρ),are studied. This work arises asa generalization to the space(D,ρ)of the study made by Suzuki |
| publishDate |
2015 |
| dc.date.issued.none.fl_str_mv |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-02T13:56:16Z |
| dc.date.available.none.fl_str_mv |
2022-09-02T13:56:16Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Benítez-Babilonia, L. (2015). Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad. Revista integración, Temas De matemáticas, 33(1), 41–50. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768 |
| dc.identifier.issn.none.fl_str_mv |
0120-419X |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30359 |
| dc.identifier.eissn.none.fl_str_mv |
2145-8472 |
| dc.identifier.url.spa.fl_str_mv |
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768 |
| identifier_str_mv |
Benítez-Babilonia, L. (2015). Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad. Revista integración, Temas De matemáticas, 33(1), 41–50. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768 0120-419X 2145-8472 |
| url |
https://hdl.handle.net/10495/30359 https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Integr. Temas Mat. |
| dc.relation.citationendpage.spa.fl_str_mv |
50 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
41 |
| dc.relation.citationvolume.spa.fl_str_mv |
33 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Integración, Temas de Matemáticas |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad Industrial de Santander, Escuela de Matemáticas |
| dc.publisher.place.spa.fl_str_mv |
Bucaramanga, Colombia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/10c4f7ca-7409-44b6-9296-fe1bcb7330db/download https://bibliotecadigital.udea.edu.co/bitstreams/a40967e4-c5d3-4b3b-a083-67a365ba4c58/download https://bibliotecadigital.udea.edu.co/bitstreams/eeb80365-d767-4bfa-ad76-3d33adf29f86/download https://bibliotecadigital.udea.edu.co/bitstreams/777afc32-9aee-4ec4-986b-cba6ca31c748/download https://bibliotecadigital.udea.edu.co/bitstreams/6ca054c5-abcc-41c7-bfab-c460851aa40b/download |
| bitstream.checksum.fl_str_mv |
14863fd8c615ce3b803fc00be003285d 8a4605be74aa9ea9d79846c1fba20a33 1646d1f6b96dbbbc38035efc9239ac9c cc7f502217c0cd54ff0af8a3dc23b263 b0629ce33378f080e8c6e19a9c8cef5f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052543121031168 |
| spelling |
Benítez Babilonia, Luis EnriqueModelación con Ecuaciones Diferenciales2022-09-02T13:56:16Z2022-09-02T13:56:16Z2015Benítez-Babilonia, L. (2015). Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad. Revista integración, Temas De matemáticas, 33(1), 41–50. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/47680120-419Xhttps://hdl.handle.net/10495/303592145-8472https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768ABSTRACT: For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki[11]proved that the fixed point property(FPP) for nonexpansive mapping sand the FPP fornonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigroups defined on D, a closed convex subset of the hyperbolic metric space(D,ρ),are studied. This work arises asa generalization to the space(D,ρ)of the study made by SuzukiRESUMEN: Para subconjuntos D cerrados y convexos de espacios de Banach, Tomonari Suzuki [11] demostró en 2009 que la propiedad del punto fijo (PPF) para funciones no expansivas y la PPF para semigrupos de funciones no expansivas son equivalentes. En este trabajo se estudian algunas relaciones entre dichas propiedades, cuando D es un subconjunto del espacio mético (D,ρ). Este trabajo surge como una generalización al espacio (D,ρ) de los resultados de Suzuki.COL002436510application/pdfengUniversidad Industrial de Santander, Escuela de MatemáticasBucaramanga, Colombiahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit diskPropiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidadArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSemigruposSemigroupsFunciones ρ-no expansivaspropiedad del punto fijoRev. Integr. Temas Mat.5014133Revista Integración, Temas de MatemáticasPublicationORIGINALBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdfBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdfArtículo de investigaciónapplication/pdf867146https://bibliotecadigital.udea.edu.co/bitstreams/10c4f7ca-7409-44b6-9296-fe1bcb7330db/download14863fd8c615ce3b803fc00be003285dMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a40967e4-c5d3-4b3b-a083-67a365ba4c58/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/eeb80365-d767-4bfa-ad76-3d33adf29f86/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.txtBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.txtExtracted texttext/plain24298https://bibliotecadigital.udea.edu.co/bitstreams/777afc32-9aee-4ec4-986b-cba6ca31c748/downloadcc7f502217c0cd54ff0af8a3dc23b263MD54falseAnonymousREADTHUMBNAILBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.jpgBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.jpgGenerated Thumbnailimage/jpeg9187https://bibliotecadigital.udea.edu.co/bitstreams/6ca054c5-abcc-41c7-bfab-c460851aa40b/downloadb0629ce33378f080e8c6e19a9c8cef5fMD55falseAnonymousREAD10495/30359oai:bibliotecadigital.udea.edu.co:10495/303592025-03-27 00:04:30.246http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
