Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk

ABSTRACT: For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki[11]proved that the fixed point property(FPP) for nonexpansive mapping sand the FPP fornonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigro...

Full description

Autores:
Benítez Babilonia, Luis Enrique
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30359
Acceso en línea:
https://hdl.handle.net/10495/30359
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768
Palabra clave:
Semigrupos
Semigroups
Funciones ρ-no expansivas
propiedad del punto fijo
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_dcf0ef22f868badbfb47649f93979cb1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30359
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
dc.title.translated.spa.fl_str_mv Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad
title Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
spellingShingle Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
Semigrupos
Semigroups
Funciones ρ-no expansivas
propiedad del punto fijo
title_short Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
title_full Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
title_fullStr Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
title_full_unstemmed Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
title_sort Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit disk
dc.creator.fl_str_mv Benítez Babilonia, Luis Enrique
dc.contributor.author.none.fl_str_mv Benítez Babilonia, Luis Enrique
dc.contributor.researchgroup.spa.fl_str_mv Modelación con Ecuaciones Diferenciales
dc.subject.lemb.none.fl_str_mv Semigrupos
Semigroups
topic Semigrupos
Semigroups
Funciones ρ-no expansivas
propiedad del punto fijo
dc.subject.proposal.spa.fl_str_mv Funciones ρ-no expansivas
propiedad del punto fijo
description ABSTRACT: For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki[11]proved that the fixed point property(FPP) for nonexpansive mapping sand the FPP fornonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigroups defined on D, a closed convex subset of the hyperbolic metric space(D,ρ),are studied. This work arises asa generalization to the space(D,ρ)of the study made by Suzuki
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2022-09-02T13:56:16Z
dc.date.available.none.fl_str_mv 2022-09-02T13:56:16Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Benítez-Babilonia, L. (2015). Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad. Revista integración, Temas De matemáticas, 33(1), 41–50. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768
dc.identifier.issn.none.fl_str_mv 0120-419X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30359
dc.identifier.eissn.none.fl_str_mv 2145-8472
dc.identifier.url.spa.fl_str_mv https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768
identifier_str_mv Benítez-Babilonia, L. (2015). Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad. Revista integración, Temas De matemáticas, 33(1), 41–50. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768
0120-419X
2145-8472
url https://hdl.handle.net/10495/30359
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Integr. Temas Mat.
dc.relation.citationendpage.spa.fl_str_mv 50
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 41
dc.relation.citationvolume.spa.fl_str_mv 33
dc.relation.ispartofjournal.spa.fl_str_mv Revista Integración, Temas de Matemáticas
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Industrial de Santander, Escuela de Matemáticas
dc.publisher.place.spa.fl_str_mv Bucaramanga, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/10c4f7ca-7409-44b6-9296-fe1bcb7330db/download
https://bibliotecadigital.udea.edu.co/bitstreams/a40967e4-c5d3-4b3b-a083-67a365ba4c58/download
https://bibliotecadigital.udea.edu.co/bitstreams/eeb80365-d767-4bfa-ad76-3d33adf29f86/download
https://bibliotecadigital.udea.edu.co/bitstreams/777afc32-9aee-4ec4-986b-cba6ca31c748/download
https://bibliotecadigital.udea.edu.co/bitstreams/6ca054c5-abcc-41c7-bfab-c460851aa40b/download
bitstream.checksum.fl_str_mv 14863fd8c615ce3b803fc00be003285d
8a4605be74aa9ea9d79846c1fba20a33
1646d1f6b96dbbbc38035efc9239ac9c
cc7f502217c0cd54ff0af8a3dc23b263
b0629ce33378f080e8c6e19a9c8cef5f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052543121031168
spelling Benítez Babilonia, Luis EnriqueModelación con Ecuaciones Diferenciales2022-09-02T13:56:16Z2022-09-02T13:56:16Z2015Benítez-Babilonia, L. (2015). Propiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidad. Revista integración, Temas De matemáticas, 33(1), 41–50. Recuperado a partir de https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/47680120-419Xhttps://hdl.handle.net/10495/303592145-8472https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4768ABSTRACT: For closed convex subsets D of a Banach spaces, in 2009, Tomonari Suzuki[11]proved that the fixed point property(FPP) for nonexpansive mapping sand the FPP fornonexpansive semigroups are equivalent. In this paper some relations between the aforementioned properties for mappings and semigroups defined on D, a closed convex subset of the hyperbolic metric space(D,ρ),are studied. This work arises asa generalization to the space(D,ρ)of the study made by SuzukiRESUMEN: Para subconjuntos D cerrados y convexos de espacios de Banach, Tomonari Suzuki [11] demostró en 2009 que la propiedad del punto fijo (PPF) para funciones no expansivas y la PPF para semigrupos de funciones no expansivas son equivalentes. En este trabajo se estudian algunas relaciones entre dichas propiedades, cuando D es un subconjunto del espacio mético (D,ρ). Este trabajo surge como una generalización al espacio (D,ρ) de los resultados de Suzuki.COL002436510application/pdfengUniversidad Industrial de Santander, Escuela de MatemáticasBucaramanga, Colombiahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fixed point property for nonexpansive mappings and nonexpansive semigroups on the unit diskPropiedad del punto fijo para funciones y semigrupos no expansivos en el disco unidadArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionSemigruposSemigroupsFunciones ρ-no expansivaspropiedad del punto fijoRev. Integr. Temas Mat.5014133Revista Integración, Temas de MatemáticasPublicationORIGINALBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdfBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdfArtículo de investigaciónapplication/pdf867146https://bibliotecadigital.udea.edu.co/bitstreams/10c4f7ca-7409-44b6-9296-fe1bcb7330db/download14863fd8c615ce3b803fc00be003285dMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a40967e4-c5d3-4b3b-a083-67a365ba4c58/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/eeb80365-d767-4bfa-ad76-3d33adf29f86/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.txtBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.txtExtracted texttext/plain24298https://bibliotecadigital.udea.edu.co/bitstreams/777afc32-9aee-4ec4-986b-cba6ca31c748/downloadcc7f502217c0cd54ff0af8a3dc23b263MD54falseAnonymousREADTHUMBNAILBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.jpgBenitezLuis_2015_FixedPointPropertyFornonexpansive.pdf.jpgGenerated Thumbnailimage/jpeg9187https://bibliotecadigital.udea.edu.co/bitstreams/6ca054c5-abcc-41c7-bfab-c460851aa40b/downloadb0629ce33378f080e8c6e19a9c8cef5fMD55falseAnonymousREAD10495/30359oai:bibliotecadigital.udea.edu.co:10495/303592025-03-27 00:04:30.246http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=