Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease
ABSTRACT: Dynamic causal modeling (DCM) is a framework for making inferences about changes in brain connectivity using neuroimaging data. We fitted DCMs to high-density EEG data from subjects performing a semantic picture matching task. The subjects are carriers of the PSEN1 mutation, which leads to...
- Autores:
-
Lopera Restrepo, Francisco Javier
Penny, Will
Iglesias Fuster, Jorge
Quiroz, Yakeel T.
Bobes, Maria A.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/27909
- Acceso en línea:
- http://hdl.handle.net/10495/27909
https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170405
- Palabra clave:
- Alzheimer Disease
Enfermedad de Alzheimer
Electroencephalography
Electroencefalografía
Multivariate Analysis
Análisis Multivariante
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/2.5/co/
| id |
UDEA2_dbbea6250a0aff8c198c79eaa4edc2ee |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/27909 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| title |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| spellingShingle |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease Alzheimer Disease Enfermedad de Alzheimer Electroencephalography Electroencefalografía Multivariate Analysis Análisis Multivariante |
| title_short |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| title_full |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| title_fullStr |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| title_full_unstemmed |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| title_sort |
Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s Disease |
| dc.creator.fl_str_mv |
Lopera Restrepo, Francisco Javier Penny, Will Iglesias Fuster, Jorge Quiroz, Yakeel T. Bobes, Maria A. |
| dc.contributor.author.none.fl_str_mv |
Lopera Restrepo, Francisco Javier Penny, Will Iglesias Fuster, Jorge Quiroz, Yakeel T. Bobes, Maria A. |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Neurociencias de Antioquia |
| dc.subject.decs.none.fl_str_mv |
Alzheimer Disease Enfermedad de Alzheimer Electroencephalography Electroencefalografía Multivariate Analysis Análisis Multivariante |
| topic |
Alzheimer Disease Enfermedad de Alzheimer Electroencephalography Electroencefalografía Multivariate Analysis Análisis Multivariante |
| description |
ABSTRACT: Dynamic causal modeling (DCM) is a framework for making inferences about changes in brain connectivity using neuroimaging data. We fitted DCMs to high-density EEG data from subjects performing a semantic picture matching task. The subjects are carriers of the PSEN1 mutation, which leads to early onset Alzheimer’s disease, but at the time of EEG acquisition in 1999, these subjects were cognitively unimpaired. We asked 1) what is the optimal model architecture for explaining the event-related potentials in this population, 2) which connections are different between this Presymptomatic Carrier (PreC) group and a Non-Carrier (NonC) group performing the same task, and 3) which network connections are predictive of subsequent Mini-Mental State Exam (MMSE) trajectories. We found 1) a model with hierarchical rather than lateral connections between hemispheres to be optimal, 2) that a pathway from right inferotemporal cortex (IT) to left medial temporal lobe (MTL) was preferentially activated by incongruent items for subjects in the PreC group but not the NonC group, and 3) that increased effective connectivity among left MTL, right IT, and right MTL was predictive of subsequent MMSE scores. |
| publishDate |
2018 |
| dc.date.issued.none.fl_str_mv |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2022-04-27T15:28:24Z |
| dc.date.available.none.fl_str_mv |
2022-04-27T15:28:24Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1387-2877 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/27909 |
| dc.identifier.doi.none.fl_str_mv |
10.3233/JAD-170405 |
| dc.identifier.eissn.none.fl_str_mv |
1875-8908 |
| dc.identifier.url.spa.fl_str_mv |
https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170405 |
| identifier_str_mv |
1387-2877 10.3233/JAD-170405 1875-8908 |
| url |
http://hdl.handle.net/10495/27909 https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170405 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
J Alzheimers Dis |
| dc.relation.citationendpage.spa.fl_str_mv |
711 |
| dc.relation.citationissue.spa.fl_str_mv |
3 |
| dc.relation.citationstartpage.spa.fl_str_mv |
697 |
| dc.relation.citationvolume.spa.fl_str_mv |
65 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Alzheimer's Disease |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/co/ https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
15 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
IOS Press |
| dc.publisher.place.spa.fl_str_mv |
Amsterdam, Países Bajos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/5b1e87d4-7ae8-49a6-8e85-94daf63f8dea/download https://bibliotecadigital.udea.edu.co/bitstreams/65984198-39e1-4ddd-91a4-46193cd81d3e/download https://bibliotecadigital.udea.edu.co/bitstreams/a4086936-ed8e-4c21-8f28-4171226b95f4/download https://bibliotecadigital.udea.edu.co/bitstreams/c176ff83-d605-4491-8c4d-a27a1c0f1fdc/download https://bibliotecadigital.udea.edu.co/bitstreams/ab20ce76-aadf-4acb-b263-71251d4223da/download |
| bitstream.checksum.fl_str_mv |
0c5dcbdbff10dbbdcac71d2fe68a1765 c0c92b0ffc8b7d22d9cf56754a416a76 8a4605be74aa9ea9d79846c1fba20a33 b47dc5d9a09f61e115f906932327b833 453989ba5453dc50cb95dfecebb57f21 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052255506071552 |
| spelling |
Lopera Restrepo, Francisco JavierPenny, WillIglesias Fuster, JorgeQuiroz, Yakeel T.Bobes, Maria A.Grupo de Neurociencias de Antioquia2022-04-27T15:28:24Z2022-04-27T15:28:24Z20181387-2877http://hdl.handle.net/10495/2790910.3233/JAD-1704051875-8908https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170405ABSTRACT: Dynamic causal modeling (DCM) is a framework for making inferences about changes in brain connectivity using neuroimaging data. We fitted DCMs to high-density EEG data from subjects performing a semantic picture matching task. The subjects are carriers of the PSEN1 mutation, which leads to early onset Alzheimer’s disease, but at the time of EEG acquisition in 1999, these subjects were cognitively unimpaired. We asked 1) what is the optimal model architecture for explaining the event-related potentials in this population, 2) which connections are different between this Presymptomatic Carrier (PreC) group and a Non-Carrier (NonC) group performing the same task, and 3) which network connections are predictive of subsequent Mini-Mental State Exam (MMSE) trajectories. We found 1) a model with hierarchical rather than lateral connections between hemispheres to be optimal, 2) that a pathway from right inferotemporal cortex (IT) to left medial temporal lobe (MTL) was preferentially activated by incongruent items for subjects in the PreC group but not the NonC group, and 3) that increased effective connectivity among left MTL, right IT, and right MTL was predictive of subsequent MMSE scores.001074415application/pdfengIOS PressAmsterdam, Países Bajoshttp://creativecommons.org/licenses/by-nc/2.5/co/https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dynamic Causal Modeling of Preclinical Autosomal-Dominant Alzheimer`s DiseaseArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAlzheimer DiseaseEnfermedad de AlzheimerElectroencephalographyElectroencefalografíaMultivariate AnalysisAnálisis MultivarianteJ Alzheimers Dis711369765Journal of Alzheimer's DiseasePublicationORIGINALLoperaFrancisco_2018_ AutosomalDominantAlzheimers.pdfLoperaFrancisco_2018_ AutosomalDominantAlzheimers.pdfArtículo de investigaciónapplication/pdf639920https://bibliotecadigital.udea.edu.co/bitstreams/5b1e87d4-7ae8-49a6-8e85-94daf63f8dea/download0c5dcbdbff10dbbdcac71d2fe68a1765MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8933https://bibliotecadigital.udea.edu.co/bitstreams/65984198-39e1-4ddd-91a4-46193cd81d3e/downloadc0c92b0ffc8b7d22d9cf56754a416a76MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a4086936-ed8e-4c21-8f28-4171226b95f4/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTLoperaFrancisco_2018_ AutosomalDominantAlzheimers.pdf.txtLoperaFrancisco_2018_ AutosomalDominantAlzheimers.pdf.txtExtracted texttext/plain68956https://bibliotecadigital.udea.edu.co/bitstreams/c176ff83-d605-4491-8c4d-a27a1c0f1fdc/downloadb47dc5d9a09f61e115f906932327b833MD54falseAnonymousREADTHUMBNAILLoperaFrancisco_2018_ AutosomalDominantAlzheimers.pdf.jpgLoperaFrancisco_2018_ AutosomalDominantAlzheimers.pdf.jpgGenerated Thumbnailimage/jpeg14485https://bibliotecadigital.udea.edu.co/bitstreams/ab20ce76-aadf-4acb-b263-71251d4223da/download453989ba5453dc50cb95dfecebb57f21MD55falseAnonymousREAD10495/27909oai:bibliotecadigital.udea.edu.co:10495/279092025-03-26 19:25:58.439http://creativecommons.org/licenses/by-nc/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
