SisFall : A Fall and Movement Dataset
ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed...
- Autores:
-
López Hincapie, José David
Vargas Bonilla, Jesús Francisco
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/12835
- Acceso en línea:
- http://hdl.handle.net/10495/12835
- Palabra clave:
- Detección de caídas
Servicios móviles de salud
Acelerómetro triaxial
Dispositivos portátiles
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_db876372e5b781535ba90f133dc45a77 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/12835 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
SisFall : A Fall and Movement Dataset |
| title |
SisFall : A Fall and Movement Dataset |
| spellingShingle |
SisFall : A Fall and Movement Dataset Detección de caídas Servicios móviles de salud Acelerómetro triaxial Dispositivos portátiles |
| title_short |
SisFall : A Fall and Movement Dataset |
| title_full |
SisFall : A Fall and Movement Dataset |
| title_fullStr |
SisFall : A Fall and Movement Dataset |
| title_full_unstemmed |
SisFall : A Fall and Movement Dataset |
| title_sort |
SisFall : A Fall and Movement Dataset |
| dc.creator.fl_str_mv |
López Hincapie, José David Vargas Bonilla, Jesús Francisco |
| dc.contributor.author.none.fl_str_mv |
López Hincapie, José David Vargas Bonilla, Jesús Francisco |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.none.fl_str_mv |
Detección de caídas Servicios móviles de salud Acelerómetro triaxial Dispositivos portátiles |
| topic |
Detección de caídas Servicios móviles de salud Acelerómetro triaxial Dispositivos portátiles |
| description |
ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark. |
| publishDate |
2017 |
| dc.date.issued.none.fl_str_mv |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2020-01-05T03:31:55Z |
| dc.date.available.none.fl_str_mv |
2020-01-05T03:31:55Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198 |
| dc.identifier.issn.none.fl_str_mv |
1424-8220 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/12835 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/s17010198 |
| identifier_str_mv |
Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198 1424-8220 10.3390/s17010198 |
| url |
http://hdl.handle.net/10495/12835 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
17 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Sensors |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución 2.5 Colombia (CC BY 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/2.5/co/ Atribución 2.5 Colombia (CC BY 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
MDPI |
| dc.publisher.place.spa.fl_str_mv |
Suiza |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/b379330d-b76d-42dc-979f-69364eac3dc6/download https://bibliotecadigital.udea.edu.co/bitstreams/d3ba9e54-397a-4043-a8c0-7160b8b33bb0/download https://bibliotecadigital.udea.edu.co/bitstreams/08a3b94e-f4ba-4f4b-bedc-fe745dbe7bc6/download https://bibliotecadigital.udea.edu.co/bitstreams/d3c6281d-c4a6-467a-9bf2-ea73a5962723/download https://bibliotecadigital.udea.edu.co/bitstreams/135d86c8-cabe-4006-9fb7-6cc84dc83684/download https://bibliotecadigital.udea.edu.co/bitstreams/a9517d86-d781-40a5-ae4e-6c3dd0621608/download https://bibliotecadigital.udea.edu.co/bitstreams/b71a8c1e-d2ca-4e1c-a0c2-9a7de1d561c3/download |
| bitstream.checksum.fl_str_mv |
fa9cf9800a9f0fa78eb1a283fe44434d 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 8a4605be74aa9ea9d79846c1fba20a33 ff4fa5f5c97e2951e571b9fd2291fac6 6bc7937b606cfc84db62ec98723d5cfe |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052548728815616 |
| spelling |
López Hincapie, José DavidVargas Bonilla, Jesús FranciscoSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2020-01-05T03:31:55Z2020-01-05T03:31:55Z2017Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s170101981424-8220http://hdl.handle.net/10495/1283510.3390/s17010198ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark.13application/pdfengMDPISuizahttps://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/2.5/co/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Detección de caídasServicios móviles de saludAcelerómetro triaxialDispositivos portátilesSisFall : A Fall and Movement DatasetArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion141117SensorsPublicationORIGINALSucerquiaAngela_2017_Sisfallmovement.pdfSucerquiaAngela_2017_Sisfallmovement.pdfArtículo de investigaciónapplication/pdf715447https://bibliotecadigital.udea.edu.co/bitstreams/b379330d-b76d-42dc-979f-69364eac3dc6/downloadfa9cf9800a9f0fa78eb1a283fe44434dMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/d3ba9e54-397a-4043-a8c0-7160b8b33bb0/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/08a3b94e-f4ba-4f4b-bedc-fe745dbe7bc6/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/d3c6281d-c4a6-467a-9bf2-ea73a5962723/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/135d86c8-cabe-4006-9fb7-6cc84dc83684/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTSucerquiaAngela_2017_Sisfallmovement.pdf.txtSucerquiaAngela_2017_Sisfallmovement.pdf.txtExtracted texttext/plain50359https://bibliotecadigital.udea.edu.co/bitstreams/a9517d86-d781-40a5-ae4e-6c3dd0621608/downloadff4fa5f5c97e2951e571b9fd2291fac6MD56falseAnonymousREADTHUMBNAILSucerquiaAngela_2017_Sisfallmovement.pdf.jpgSucerquiaAngela_2017_Sisfallmovement.pdf.jpgGenerated Thumbnailimage/jpeg14379https://bibliotecadigital.udea.edu.co/bitstreams/b71a8c1e-d2ca-4e1c-a0c2-9a7de1d561c3/download6bc7937b606cfc84db62ec98723d5cfeMD57falseAnonymousREAD10495/12835oai:bibliotecadigital.udea.edu.co:10495/128352025-03-27 00:09:40.659https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
