SisFall : A Fall and Movement Dataset

ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed...

Full description

Autores:
López Hincapie, José David
Vargas Bonilla, Jesús Francisco
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/12835
Acceso en línea:
http://hdl.handle.net/10495/12835
Palabra clave:
Detección de caídas
Servicios móviles de salud
Acelerómetro triaxial
Dispositivos portátiles
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_db876372e5b781535ba90f133dc45a77
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/12835
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv SisFall : A Fall and Movement Dataset
title SisFall : A Fall and Movement Dataset
spellingShingle SisFall : A Fall and Movement Dataset
Detección de caídas
Servicios móviles de salud
Acelerómetro triaxial
Dispositivos portátiles
title_short SisFall : A Fall and Movement Dataset
title_full SisFall : A Fall and Movement Dataset
title_fullStr SisFall : A Fall and Movement Dataset
title_full_unstemmed SisFall : A Fall and Movement Dataset
title_sort SisFall : A Fall and Movement Dataset
dc.creator.fl_str_mv López Hincapie, José David
Vargas Bonilla, Jesús Francisco
dc.contributor.author.none.fl_str_mv López Hincapie, José David
Vargas Bonilla, Jesús Francisco
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.none.fl_str_mv Detección de caídas
Servicios móviles de salud
Acelerómetro triaxial
Dispositivos portátiles
topic Detección de caídas
Servicios móviles de salud
Acelerómetro triaxial
Dispositivos portátiles
description ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-01-05T03:31:55Z
dc.date.available.none.fl_str_mv 2020-01-05T03:31:55Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198
dc.identifier.issn.none.fl_str_mv 1424-8220
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/12835
dc.identifier.doi.none.fl_str_mv 10.3390/s17010198
identifier_str_mv Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198
1424-8220
10.3390/s17010198
url http://hdl.handle.net/10495/12835
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Sensors
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.*.fl_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/2.5/co/
Atribución 2.5 Colombia (CC BY 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Suiza
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/b379330d-b76d-42dc-979f-69364eac3dc6/download
https://bibliotecadigital.udea.edu.co/bitstreams/d3ba9e54-397a-4043-a8c0-7160b8b33bb0/download
https://bibliotecadigital.udea.edu.co/bitstreams/08a3b94e-f4ba-4f4b-bedc-fe745dbe7bc6/download
https://bibliotecadigital.udea.edu.co/bitstreams/d3c6281d-c4a6-467a-9bf2-ea73a5962723/download
https://bibliotecadigital.udea.edu.co/bitstreams/135d86c8-cabe-4006-9fb7-6cc84dc83684/download
https://bibliotecadigital.udea.edu.co/bitstreams/a9517d86-d781-40a5-ae4e-6c3dd0621608/download
https://bibliotecadigital.udea.edu.co/bitstreams/b71a8c1e-d2ca-4e1c-a0c2-9a7de1d561c3/download
bitstream.checksum.fl_str_mv fa9cf9800a9f0fa78eb1a283fe44434d
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
ff4fa5f5c97e2951e571b9fd2291fac6
6bc7937b606cfc84db62ec98723d5cfe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052548728815616
spelling López Hincapie, José DavidVargas Bonilla, Jesús FranciscoSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2020-01-05T03:31:55Z2020-01-05T03:31:55Z2017Sucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s170101981424-8220http://hdl.handle.net/10495/1283510.3390/s17010198ABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark.13application/pdfengMDPISuizahttps://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/2.5/co/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Detección de caídasServicios móviles de saludAcelerómetro triaxialDispositivos portátilesSisFall : A Fall and Movement DatasetArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion141117SensorsPublicationORIGINALSucerquiaAngela_2017_Sisfallmovement.pdfSucerquiaAngela_2017_Sisfallmovement.pdfArtículo de investigaciónapplication/pdf715447https://bibliotecadigital.udea.edu.co/bitstreams/b379330d-b76d-42dc-979f-69364eac3dc6/downloadfa9cf9800a9f0fa78eb1a283fe44434dMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/d3ba9e54-397a-4043-a8c0-7160b8b33bb0/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/08a3b94e-f4ba-4f4b-bedc-fe745dbe7bc6/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/d3c6281d-c4a6-467a-9bf2-ea73a5962723/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/135d86c8-cabe-4006-9fb7-6cc84dc83684/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTSucerquiaAngela_2017_Sisfallmovement.pdf.txtSucerquiaAngela_2017_Sisfallmovement.pdf.txtExtracted texttext/plain50359https://bibliotecadigital.udea.edu.co/bitstreams/a9517d86-d781-40a5-ae4e-6c3dd0621608/downloadff4fa5f5c97e2951e571b9fd2291fac6MD56falseAnonymousREADTHUMBNAILSucerquiaAngela_2017_Sisfallmovement.pdf.jpgSucerquiaAngela_2017_Sisfallmovement.pdf.jpgGenerated Thumbnailimage/jpeg14379https://bibliotecadigital.udea.edu.co/bitstreams/b71a8c1e-d2ca-4e1c-a0c2-9a7de1d561c3/download6bc7937b606cfc84db62ec98723d5cfeMD57falseAnonymousREAD10495/12835oai:bibliotecadigital.udea.edu.co:10495/128352025-03-27 00:09:40.659https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=