Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno
El agua de buena calidad es esencial para mantener el bienestar humano y el equilibrio ecológico de los ecosistemas con miras al desarrollo sostenible. Una subclase de productos químicos orgánicos que se detectan cada vez con más frecuencia en cuerpos de agua y que son de importancia porque alteran...
- Autores:
-
Flórez Restrepo, María Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/47590
- Acceso en línea:
- https://hdl.handle.net/10495/47590
- Palabra clave:
- Impacto ambiental
Environmental Impact
Podredumbre blanca (madera)
white rot (wood)
Biodegradación
biodegradation
Hongos de la podredumbre blanca
Enzimas ligninolíticas
Contaminantes emergentes
Inmovilización en quitosano
Ligninolytic enzymes
Emerging contaminants
Chitosan immobilization
http://aims.fao.org/aos/agrovoc/c_25100
http://aims.fao.org/aos/agrovoc/c_9261
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles
ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_d263ca70bb753d41247807bd7aee00a9 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/47590 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| dc.title.translated.none.fl_str_mv |
Covalent immobilization in chitosan of ligninolytic enzymes obtained from white-rot fungi and their application in the degradation of emerging contaminants such as acetaminophen and ibuprofen |
| title |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| spellingShingle |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno Impacto ambiental Environmental Impact Podredumbre blanca (madera) white rot (wood) Biodegradación biodegradation Hongos de la podredumbre blanca Enzimas ligninolíticas Contaminantes emergentes Inmovilización en quitosano Ligninolytic enzymes Emerging contaminants Chitosan immobilization http://aims.fao.org/aos/agrovoc/c_25100 http://aims.fao.org/aos/agrovoc/c_9261 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad |
| title_short |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| title_full |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| title_fullStr |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| title_full_unstemmed |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| title_sort |
Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofeno |
| dc.creator.fl_str_mv |
Flórez Restrepo, María Alejandra |
| dc.contributor.advisor.none.fl_str_mv |
Segura Sánchez, Freimar López Legarda, Xiomara |
| dc.contributor.author.none.fl_str_mv |
Flórez Restrepo, María Alejandra |
| dc.contributor.researchgroup.none.fl_str_mv |
BIOPOLIMER |
| dc.contributor.jury.none.fl_str_mv |
Cinto, Isabel Esther Hernández Luna, Carlos Eduardo |
| dc.subject.lemb.none.fl_str_mv |
Impacto ambiental Environmental Impact |
| topic |
Impacto ambiental Environmental Impact Podredumbre blanca (madera) white rot (wood) Biodegradación biodegradation Hongos de la podredumbre blanca Enzimas ligninolíticas Contaminantes emergentes Inmovilización en quitosano Ligninolytic enzymes Emerging contaminants Chitosan immobilization http://aims.fao.org/aos/agrovoc/c_25100 http://aims.fao.org/aos/agrovoc/c_9261 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad |
| dc.subject.agrovoc.none.fl_str_mv |
Podredumbre blanca (madera) white rot (wood) Biodegradación biodegradation |
| dc.subject.proposal.spa.fl_str_mv |
Hongos de la podredumbre blanca Enzimas ligninolíticas Contaminantes emergentes Inmovilización en quitosano |
| dc.subject.proposal.eng.fl_str_mv |
Ligninolytic enzymes Emerging contaminants Chitosan immobilization |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_25100 http://aims.fao.org/aos/agrovoc/c_9261 |
| dc.subject.ods.none.fl_str_mv |
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad |
| description |
El agua de buena calidad es esencial para mantener el bienestar humano y el equilibrio ecológico de los ecosistemas con miras al desarrollo sostenible. Una subclase de productos químicos orgánicos que se detectan cada vez con más frecuencia en cuerpos de agua y que son de importancia porque alteran negativamente los ecosistemas se han clasificado como contaminantes emergentes. Entre ellos, se encuentran bajo especial atención algunos compuestos farmacéuticos porque poseen actividad biológica y algunos de alto consumo como el acetaminofén e ibuprofeno, se están liberando en grandes cantidades al ambiente. Debido a esto, se están desarrollando y estudiando diversos métodos y técnicas para degradar contaminantes, entre los cuales, se han evaluado diferentes tipos de enzimas con capacidad oxidativa. Entre los diversos organismos estudiados en biorremediación, los hongos han llamado particular atención, y entre ellos, los que producen pudrición blanca de la madera gracias a sus enzimas ligninolíticas que han sido las más promisorias y estudiadas. Si bien, las enzimas libres tienen aplicabilidad, la investigación de enzimas inmovilizadas es de gran interés industrial, debido al hecho de que éstas pueden ser utilizadas por más de un ciclo catalítico, es decir, reutilizarse manteniendo una eficiencia satisfactoria o incluso utilizarse en procesos en continuo. Inicialmente, se estudió la producción de enzimas ligninolíticas de 17 hongos de la podredumbre blanca previamente aislados en un bosque húmedo tropical colombiano, incubando los cultivos durante 6 semanas en un medio liquido rico en material ligninocelulósico compuesto de residuos agroindustriales. Se encontraron principalmente géneros de Ganoderma spp. y Lentinus sp., con la capacidad de producir lacasa y manganeso peroxidasa. En la siguiente etapa, se realizó producción enzimática cultivando el aislado Ganoderma parvulum en biorreactor de 5L. Posteriormente, las enzimas se purificaron parcialmente y se inmovilizaron de manera covalente en microesferas de quitosano. Para tal fin, las microesferas obtenidas fueron activadas utilizando un agente entrecruzante y puestas en contacto con el extracto enzimático. Se encontró que entre los parámetros evaluados se obtuvo mayor eficiencia de inmovilización con 10% de glutaraldehído, 60 minutos de tiempo de reticulación y 10.000 U/L de lacasas. Además, se evaluó la estabilidad operativa de las macropartículas con enzimas y la aplicación de éstas en la biotransformación de acetaminofén e ibuprofeno. Encontrando hasta un 98% de biosorción/biotransformación del acetaminofén asociado a las enzimas inmovilizadas después de cuatro horas de reacción. Concluyendo así en la posible utilidad del sistema evaluado en tratamientos de biorremediación, debido a que este estudio proporcionó un enfoque de tratamiento para degradar contaminantes emergentes como fármacos de alto consumo como acetaminofén e ibuprofeno, con una alta eficacia, resultados que son buscados debido a la presencia ubicua de estos fármacos en la naturaleza y sus propiedades toxicológicas en el ambiente. No se descarta la capacidad del sistema para degradar muchos otros tipos de contaminantes presentes en cuerpos de agua ya que existen reportes de la capacidad de las enzimas ligninolíticas para degradar otros tipos de compuestos como colorantes, pesticidas, disruptores endocrinos, entre otros. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-08T12:52:12Z |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/47590 |
| url |
https://hdl.handle.net/10495/47590 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Afreen, S., Anwer, R., Singh, R. K., & Fatma, T. (2018). Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi Journal of Biological Sciences, 25(7), 1446–1453. https://doi.org/10.1016/j.sjbs.2016.01.015 Agrawal, K., Bhardwaj, N., Kumar, B., Chaturvedi, V., & Verma, P. (2019). Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. International Journal of Biological Macromolecules, 125, 1042–1055. https://doi.org/10.1016/J.IJBIOMAC.2018.12.108 Águila Puentes, S. A. (2010). “Inmovilización de Proteínas con Actividad Peroxidasa en Nanoestructuras y sus Aplicaciones Sobre Reacciones de Epoxidación de Olefinas” Tesis de maestría [Universidad de Concepción]. http://repositorio.conicyt.cl/bitstream/handle/10533/180266/AGUILA_SERGIO_0976D.pdf?sequence=1 Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323, 274–298. https://doi.org/10.1016/J.JHAZMAT.2016.04.045 Akerman-Sanchez, G., & Rojas-Jimenez, K. (2021). Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment. Environmental Advances, 4, 100071. https://doi.org/10.1016/J.ENVADV.2021.100071 Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J. E., Barceló, D., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review. International Journal of Biological Macromolecules, 181, 683–696. https://doi.org/10.1016/j.ijbiomac.2021.03.175 Alvarado Ramírez, L. (2015). Inmovilización de lacasas en esferas de SiO2 para la degradación de Rojo Congo [Universidad Autonoma de Nuevo León]. https://core.ac.uk/download/pdf/76602417.pdf Arboleda Echavarría, C., Mejía Gallón, A. I., Franco Molano, A. E., Jiménez Tobón, G. A., & Penninckx, M. (2008). Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production. SYDOWIA - An International Journal of Mycology, 60(2), 165–180. http://www.sydowia.at/syd60-2/T1-Arboleda.htm Aricov, L., Leonties, A. R., Gîfu, I. C., Preda, D., Raducan, A., & Anghel, D. F. (2020). Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants. Journal of Environmental Management, 276, 111326. https://doi.org/10.1016/J.JENVMAN.2020.111326 Asgher, M., Noreen, S., & Bilal, M. (2017). Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres. Chemical Engineering Research and Design, 119, 1–11. https://doi.org/10.1016/j.cherd.2016.12.011 Aslam, S., Asgher, M., Khan, N. A., & Bilal, M. (2021). Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes. Journal of Water Process Engineering, 40, 101971. https://doi.org/10.1016/J.JWPE.2021.101971 Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal of Genetic Engineering and Biotechnology, 15(1), 139–150. https://doi.org/10.1016/j.jgeb.2017.01.007 Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Muñoz-Gutiérrez, B. D., Iqbal, H. M. N., Kannan, S., & Parra-Saldívar, R. (2018). Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation – A review. Science of The Total Environment, 612, 1516–1531. https://doi.org/10.1016/J.SCITOTENV.2017.09.013 Belhaj, D., Baccar, R., Jaabiri, I., Bouzid, J., Kallel, M., Ayadi, H., & Zhou, J. L. (2015). Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa). Science of the Total Environment, 505, 154–160. https://doi.org/10.1016/j.scitotenv.2014.10.018 Biko, O. D. V., Viljoen-Bloom, M., & van Zyl, W. H. (2020). Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme and Microbial Technology, 141, 109669. https://doi.org/10.1016/J.ENZMICTEC.2020.109669 Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Emerging contaminants of high concern and their enzyme-assisted biodegradation – A review. In Environment International (Vol. 124, pp. 336–353). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.01.011 Bilal, M., Iqbal, M., Hu, H., & Zhang, X. (2016). Mutagenicity and cytotoxicity assessment of biodegraded textile effluent by Ca-alginate encapsulated manganese peroxidase. Biochemical Engineering Journal, 109, 153–161. https://doi.org/10.1016/J.BEJ.2016.01.020 Bilal, M., Jing, Z., Zhao, Y., & Iqbal, H. M. N. (2019). Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatalysis and Agricultural Biotechnology, 19, 101174. https://doi.org/10.1016/j.bcab.2019.101174 Bilal, M., Zdarta, J., Jesionowski, T., & Iqbal, H. M. N. (2023). Manganese peroxidases as robust biocatalytic tool — An overview of sources, immobilization, and biotechnological applications. International Journal of Biological Macromolecules, 123531. https://doi.org/10.1016/J.IJBIOMAC.2023.123531 Borges, K. B., De Oliveira, A. R. M., Barth, T., Jabor, V. A. P., Pupo, M. T., & Bonato, P. S. (2011). LC-MS-MS determination of ibuprofen, 2-hydroxyibuprofen enantiomers, and carboxyibuprofen stereoisomers for application in biotransformation studies employing endophytic fungi. Analytical and Bioanalytical Chemistry, 399(2), 915–925. https://doi.org/10.1007/S00216-010-4329-9 Cen, Q., Wu, X., Cao, L., Lu, Y., Lu, X., Chen, J., Fu, G., Liu, Y., & Ruan, R. (2022). Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal. AMB Express, 12(1), 1–15. https://doi.org/10.1186/S13568-022-01434-6/FIGURES/8 Chandra, R., & Kumar, V. (2017). Extremophilic Ligninolytic Enzymes. In R. Sani & N. Krishnaraj (Eds.), Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy (First). Springer . https://www.researchgate.net/publication/313799342_Extremophilic_Ligninolytic_Enzymes Chávez-Sifontes, M., & Domine, M. E. (2013). Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial . Avances En Ciencias e Ingeniería , 4(4), 15–46. https://www.redalyc.org/pdf/3236/323629266003.pdf Chopra, S., & Kumar, D. (2020). Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon, 6(6), e04087. https://doi.org/10.1016/J.HELIYON.2020.E04087 Chu-Wen, Y., Yi-En, C., & Bea Ven, C. (2020). Microbial Communities Associated with Acetaminophen Biodegradation from Mangrove Sediment. Sustainability 2020, Vol. 12, Page 5410, 12(13), 5410. https://doi.org/10.3390/SU12135410 Cifuentes, A. D., & Rojas, D. M. (2005). Inmovilizacion de lipasa Candida rugosa en soporte de quitosano [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/2750/alidavidcifuentesdianamaritzarojas.2005.pdf?sequence=1&isAllowed=y de Lima, D. P., dos Santos, E. dos A., Marques, M. R., Giannesi, G. C., Beatriz, A., Yonekawa, M. K. A., & Montanholi, A. dos S. (2018). Fungal bioremediation of pollutant aromatic amines. Current Opinion in Green and Sustainable Chemistry, 11, 34–44. https://doi.org/10.1016/J.COGSC.2018.03.012 Debnath, R., & Saha, T. (2020). An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatalysis and Agricultural Biotechnology, 26, 101645. https://doi.org/10.1016/J.BCAB.2020.101645 Deska, M., & Kończak, B. (2019). Immobilized fungal laccase as “green catalyst” for the decolourization process – State of the art. In Process Biochemistry (Vol. 84, pp. 112–123). Elsevier Ltd. https://doi.org/10.1016/j.procbio.2019.05.024 Ding, T., Yang, M., Zhang, J., Yang, B., Lin, K., Li, J., & Gan, J. (2017). Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Journal of Hazardous Materials, 330, 127–134. https://doi.org/10.1016/J.JHAZMAT.2017.02.004 Ding, Y., Cui, K., Liu, X., Xie, Q., Guo, Z., & Chen, Y. (2022). Lignin peroxidase-catalyzed direct oxidation of trace organic pollutants through a long-range electron transfer mechanism: Using propranolol as an example. Journal of Hazardous Materials, 431, 128544. https://doi.org/10.1016/J.JHAZMAT.2022.128544 DrugBank. (2023a). Acetaminophen: Uses, Interactions, Mechanism of Action | DrugBank Online. https://go.drugbank.com/drugs/DB00316 DrugBank. (2023b). Ibuprofen: Uses, Interactions, Mechanism of Action | DrugBank Online. https://go.drugbank.com/drugs/DB01050 El Knidri, H., Laajeb, A., & Lahsini, A. (2020). Chitin and chitosan: chemistry, solubility, fiber formation, and their potential applications. In S. Thomas, A. Pius, & S. Gopi (Eds.), Handbook of Chitin and Chitosan (1st ed., Vol. 3, pp. 35–57). Elsevier. https://doi.org/10.1016/B978-0-12-817970-3.00002-X Enayatzamir, K., Alikhani, H. A., & Rodríguez Couto, S. (2009). Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. Journal of Hazardous Materials, 164(1), 296–300. https://doi.org/10.1016/J.JHAZMAT.2008.08.032 Enzymes Global Market Report. (2023, February). Market Report. https://www.reportlinker.com/p06241900/Enzymes-Global-Market-Report.html?utm_source=GNW Flaticon. (2023). Iconos vectoriales y stickers - PNG, SVG, EPS, PSD y CSS - designed by Freepik, Eucalyp and yoyonpujiono from Flaticon. https://www.flaticon.es/ Garzón, J. M., Pablo Rodríguez-Miranda, J., & Org, O. (2017). Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible Contribution of bioremediation to solve pollution problems and its relationship with sustainable development. Revista Universidad y Salud, 19, 309–318. https://doi.org/10.22267/rus.171902.93 Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002 Gomes, I. B., Simões, L. C., & Simões, M. (2018). The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Science of the Total Environment, 643, 1348–1356. https://doi.org/10.1016/j.scitotenv.2018.06.263 Gong, H., Chu, W., Lam, S. H., & Lin, A. Y. C. (2017). Ibuprofen degradation and toxicity evolution during Fe2+/Oxone/UV process. Chemosphere, 167, 415–421. https://doi.org/10.1016/J.CHEMOSPHERE.2016.10.027 González-González, R. B., Flores-Contreras, E. A., Parra-Saldívar, R., & Iqbal, H. M. N. (2022). Bio-removal of emerging pollutants by advanced bioremediation techniques. Environmental Research, 214, 113936. https://doi.org/10.1016/J.ENVRES.2022.113936 Hoinacki Da Silva, C. K., Polidoro, A. S., Cabrera Ruschel, P. M., Thue, P. S., Jacques, R. A., Lima, É. C., Bussamara, R., & Fernandes, A. N. (2022). Laccase covalently immobilized on avocado seed biochar: A high-performance biocatalyst for acetaminophen sorption and biotransformation. Journal of Environmental Chemical Engineering, 10(3), 107731. https://doi.org/10.1016/J.JECE.2022.107731 Hu, J., Zhang, L. L., Chen, J. M., & Liu, Y. (2013). Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(7), 791–799. https://doi.org/10.1080/10934529.2013.744650 Jain, M., Khan, S. A., Sharma, K., Jadhao, P. R., Pant, K. K., Ziora, Z. M., & Blaskovich, M. A. T. (2022). Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater. Bioresource Technology, 344, 126305. https://doi.org/10.1016/J.BIORTECH.2021.126305 Jeong, D., & Choi, K. Y. (2020). Biodegradation of Tetracycline Antibiotic by Laccase Biocatalyst Immobilized on Chitosan-Tripolyphosphate Beads. Applied Biochemistry and Microbiology, 56(3), 306–312. https://doi.org/10.1134/S0003683820030047/TABLES/1 Ji, C., Hou, J., & Chen, V. (2016). Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration. Journal of Membrane Science, 520, 869–880. https://doi.org/10.1016/j.memsci.2016.08.056 Kirk, T. K., Croan, S., Tien, M., Murtagh, K. E., & Farrell, R. L. (1986). Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme and Microbial Technology, 8(1), 27–32. https://doi.org/10.1016/0141-0229(86)90006-2 Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2), e03170. https://doi.org/10.1016/J.HELIYON.2020.E03170 Li, J., Ye, Q., & Gan, J. (2014). Degradation and transformation products of acetaminophen in soil. Water Research, 49, 44–52. https://doi.org/10.1016/J.WATRES.2013.11.008 Liu, Z. H., Le, R. K., Kosa, M., Yang, B., Yuan, J., & Ragauskas, A. J. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362. https://doi.org/10.1016/J.RSER.2019.02.009 López-Legarda, X. (2021). Producción, caracterización y actividad biológica de polisacáridos fúngicos [Universidad de Antioquia]. https://bibliotecadigital.udea.edu.co/handle/10495/22401 López-Legarda, X., Arboleda-Echavarría, C., & Segura-Sanchez, F. (2015). Producción de polisacáridos a partir de Ganoderma sp., aislado en la región andina. Revista Colombiana de Biotecnología, 17(2), 44–54. https://doi.org/10.15446/rev.colomb.biote.v17n2.47060 Lu, H., Yadav, V., Bilal, M., & Iqbal, H. M. N. (2022). Bioprospecting microbial hosts to valorize lignocellulose biomass – Environmental perspectives and value-added bioproducts. Chemosphere, 288, 132574. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132574 Lu, L., Zhao, M., & Wang, Y. (2006). Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization. World Journal of Microbiology and Biotechnology, 23(2), 159–166. https://doi.org/10.1007/s11274-006-9205-6 Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065 Manavalan, T., Manavalan, A., & Heese, K. (2014). Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Current Microbiology, 70(4), 485–498. https://doi.org/10.1007/s00284-014-0743-0 Marchlewicz, A., Guzik, U., & Wojcieszyńska, D. (2015). Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment - Sources, Risks, Biodegradation. Water, Air, and Soil Pollution, 226(10), 1–13. https://doi.org/10.1007/s11270-015-2622-0 Mathias, J. (2018, July 16). FTIR Analysis Beginner’s Guide: Interpreting Results | Innovatech. A Beginner’s Guide to FTIR Analysis: Interpreting & Analyzing Results. https://www.innovatechlabs.com/newsroom/1882/interpreting-analyzing-ftir-results/ Mehandia, S., Ahmad, S., Sharma, S. C., & Arya, S. K. (2022). Decolorization and detoxification of textile effluent by immobilized laccase-ACS into chitosan-clay composite beads using a packed bed reactor system: An ecofriendly approach. Journal of Water Process Engineering, 47, 102662. https://doi.org/10.1016/J.JWPE.2022.102662 Ministerio de ambiente y desarrollo sostenible. (2019, May 21). Colombia, el segundo país más biodiverso del mundo, celebra el Día Mundial de la Biodiversidad - Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/bosques-biodiversidad-y-servicios-ecosistemicos/colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad/ Mir-Tutusaus, J. A., Baccar, R., Caminal, G., & Sarrà, M. (2018). Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. In Water Research (Vol. 138, pp. 137–151). Elsevier Ltd. https://doi.org/10.1016/j.watres.2018.02.056 Morsi, R., Bilal, M., Iqbal, H. M. N., & Ashraf, S. S. (2020). Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. In Science of the Total Environment (Vol. 714, p. 136572). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.136572 Murdoch, R. W., & Hay, A. G. (2015). The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation, 26(2), 105–113. https://doi.org/10.1007/s10532-015-9719-4 Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2017). Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Science of The Total Environment, 584–585, 393–401. https://doi.org/10.1016/J.SCITOTENV.2017.01.021 Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018, March 1). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution, 234, 190–213. https://doi.org/10.1016/j.envpol.2017.11.060 Naidu, R., Arias Espana, V. A., Liu, Y., & Jit, J. (2016). Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 154, 350–357. https://doi.org/10.1016/J.CHEMOSPHERE.2016.03.068 Nayak, B., & Choudhary, R. (2022). Optimization, purification and characterization of laccase from lignocellulolytic fungi Dichotomopilus funicola NFCCI 4534 and Alternaria padwickii NFCCI 4535. Biocatalysis and Agricultural Biotechnology, 42, 102344. https://doi.org/10.1016/J.BCAB.2022.102344 Nguyen, T. A., Fu, C. C., & Juang, R. S. (2016). Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. Chemical Engineering Journal, 304, 313–324. https://doi.org/10.1016/J.CEJ.2016.06.102 Noor-Arbaain, E. N., Kamal-Bahrin, E., Mohd-Noor, N., Faizal-Ibrahim, M., Ramli, N., & Abd-Aziz, S. (2019). Chemical-free pretreatment of unwashed oil palm empty fruit bunch by using locally isolated fungus (Schizophyllum commune ENN1) for delignification. Food and Bioproducts Processing, 118, 207–216. https://doi.org/10.1016/J.FBP.2019.09.001 Olajuyigbe, F. M., & Fatokun, C. O. (2017). Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. International Journal of Biological Macromolecules, 94, 535–543. https://doi.org/10.1016/J.IJBIOMAC.2016.10.037 Orlikowska, M., de J. Rostro-Alanis, M., Bujacz, A., Hernández-Luna, C., Rubio, R., Parra, R., & Bujacz, G. (2018). Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. International Journal of Biological Macromolecules, 107, 1629–1640. https://doi.org/10.1016/J.IJBIOMAC.2017.10.024 Othman, A. M., Mahmoud, M., Abdelraof, M., Abdel Karim, G. S. A., & Elsayed, A. M. (2021). Enhancement of laccase production from a newly isolated Trichoderma harzianum S7113 using submerged fermentation: Optimization of production medium via central composite design and its application for hydroquinone degradation. International Journal of Biological Macromolecules, 192, 219–231. https://doi.org/10.1016/J.IJBIOMAC.2021.09.207 Pandey, V. P., Rani, J., Jaiswal, N., Singh, S., Awasthi, M., Shasany, A. K., Tiwari, S., & Dwivedi, U. N. (2017). Chitosan immobilized novel peroxidase from Azadirachta indica: Characterization and application. International Journal of Biological Macromolecules, 104, 1713–1720. https://doi.org/10.1016/J.IJBIOMAC.2017.02.047 Parolini, M., Binelli, A., & Provini, A. (2011). Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicology and Environmental Safety, 74(6), 1586–1594. https://doi.org/10.1016/j.ecoenv.2011.04.025 Parra Guardado, A. L. (2019). Enzymatic degradation of recalcitrant pharmaceutical micropollutants [Université de Montpellier]. https://tel.archives-ouvertes.fr/tel-02286745 Piedade, F., Bio, S., & Nunes, B. (2020). Effects of common pharmaceutical drugs (paracetamol and acetylsalicylic acid) short term exposure on biomarkers of the mussel Mytilus spp. Environmental Toxicology and Pharmacology, 73, 103276. https://doi.org/10.1016/j.etap.2019.103276 Poddar, K., Sarkar, D., Chakraborty, D., Patil, P. B., Maity, S., & Sarkar, A. (2022). Paracetamol biodegradation by Pseudomonas strain PrS10 isolated from pharmaceutical effluents. International Biodeterioration & Biodegradation, 175, 105490. https://doi.org/10.1016/J.IBIOD.2022.105490 Prinz, A., Koch, K., Górak, A., & Zeiner, T. (2014). Multi-stage laccase extraction and separation using aqueous two-phase systems: Experiment and model. Process Biochemistry, 49(6), 1020–1031. https://doi.org/10.1016/J.PROCBIO.2014.03.011 PubChem. (2023). Acetaminophen | C8H9NO2 - PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen#section=Solubility Qiu, X., Wang, S., Miao, S., Suo, H., Xu, H., & Hu, Y. (2021). Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. Journal of Hazardous Materials, 401, 123353. https://doi.org/10.1016/J.JHAZMAT.2020.123353 Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. N. (2019). Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52–66. https://doi.org/10.1016/j.envint.2018.11.038 Ratanapongleka, K., & Punbut, S. (2017). Removal of acetaminophen in water by laccase immobilized in barium alginate. Environmental Technology (United Kingdom), 39(3), 336–345. https://doi.org/10.1080/09593330.2017.1301563 Rezaei, S., Shahverdi, A. R., & Faramarzi, M. A. (2017). Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresource Technology, 230, 67–75. https://doi.org/10.1016/J.BIORTECH.2017.01.036 Sai Preethi, P., Hariharan, N. M., Vickram, S., Rameshpathy, M., Manikandan, S., Subbaiya, R., Karmegam, N., Yadav, V., Ravindran, B., Chang, S. W., & Kumar Awasthi, M. (2022). Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresource Technology, 359, 127444. https://doi.org/10.1016/J.BIORTECH.2022.127444 Sharma, A., Thatai, K. S., Kuthiala, T., Singh, G., & Arya, S. K. (2021). Employment of polysaccharides in enzyme immobilization. Reactive and Functional Polymers, 167, 105005. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.105005 Shokri, Z., Seidi, F., Karami, S., Li, C., Saeb, M. R., & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers, 262, 117963. https://doi.org/10.1016/J.CARBPOL.2021.117963 Songulashvili, G., Flahaut, S., Demarez, M., Tricot, C., Bauvois, C., Debaste, F., & Penninckx, M. J. (2016). High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biology, 120(4), 481–488. https://doi.org/10.1016/J.FUNBIO.2016.01.008 Stadlmair, L. F., Letzel, T., Drewes, J. E., & Graßmann, J. (2017). Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes. Chemosphere, 174, 466–477. https://doi.org/10.1016/j.chemosphere.2017.01.140 Sundararaman, S., Aravind Kumar, J., Deivasigamani, P., & Devarajan, Y. (2022). Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment – A challenge to water resource management. Science of The Total Environment, 825, 153897. https://doi.org/10.1016/J.SCITOTENV.2022.153897 Suryadi, H., Judono, J. J., Putri, M. R., Eclessia, A. D., Ulhaq, J. M., Agustina, D. N., & Sumiati, T. (2022). Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon, 8(2), e08865. https://doi.org/10.1016/J.HELIYON.2022.E08865 Torrez Monroy, G. P. (2015). Producción y purificación de enzimas celulolíticas, lacasas y manganeso peroxidasas de tres cepas fúngicas nativas (IB-105,GL-9B Y co-1) [Universidad Mayor de San Andres ]. http://repositorio.umsa.bo/xmlui/handle/123456789/17961 Tran, N. H., Urase, T., & Kusakabe, O. (2010). Biodegradation Characteristics of Pharmaceutical Substances by Whole Fungal Culture Trametes versicolor and its Laccase. Journal of Water and Environment Technology, 8(2), 125–140. https://doi.org/10.2965/jwet.2010.125 UNESCO. (2015). Contaminantes emergentes en la reutilización de aguas residuales en los países en desarrollo. Iniciativa Internacional Sobre La Calidad Del Agua (IIWQ) Programa Hidrologico Internacional de La UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000235241_spa Unuofin, J. O., Okoh, A. I., & Nwodo, U. U. (2019). Aptitude of oxidative enzymes for treatment of wastewater pollutants: A laccase perspective. In Molecules (Vol. 24, Issue 11). MDPI AG. https://doi.org/10.3390/molecules24112064 Varga, B., Somogyi, V., Meiczinger, M., Kováts, N., & Domokos, E. (2019). Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases - A review. Journal of Cleaner Production, 221, 306–322. https://doi.org/10.1016/J.JCLEPRO.2019.02.135 Vasiliadou, I. A., Molina, R., Pariente, M. I., Christoforidis, K. C., Martinez, F., & Melero, J. A. (2019). Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi. Chemical Engineering Journal, 359, 1427–1435. https://doi.org/10.1016/J.CEJ.2018.11.035 Velásquez-Quintero, C., Merino-Restrepo, A., & Hormaza-Anaguano, A. (2022). Production, extraction, and quantification of laccase obtained from an optimized solid-state fermentation of corncob with white-rot fungi. Journal of Cleaner Production, 370, 133598. https://doi.org/10.1016/J.JCLEPRO.2022.133598 Voběrková, S., Solčány, V., Vršanská, M., & Adam, V. (2018). Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. In Chemosphere (Vol. 202, pp. 694–707). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2018.03.088 Wang, S. S., Ning, Y. J., Wang, S. N., Zhang, J., Zhang, G. Q., & Chen, Q. J. (2017). Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. International Journal of Biological Macromolecules, 95, 920–927. https://doi.org/10.1016/J.IJBIOMAC.2016.10.079 Wang, Y., Vazquez-Duhalt, R., & Pickard, M. A. (2005). Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology, 45(2), 77–87. https://doi.org/10.1007/s00284-001-0081-x Xu, J. J., Hendriks, B. S., Zhao, J., & de Graaf, D. (2008). Multiple effects of acetaminophen and p38 inhibitors: Towards pathway toxicology. FEBS Letters, 582(8), 1276–1282. https://doi.org/10.1016/j.febslet.2008.01.063 Zhang, H., Zhang, J., Zhang, X., & Geng, A. (2018). Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process Biochemistry, 66, 222–229. https://doi.org/10.1016/J.PROCBIO.2017.12.011 Zhang, J., Cai, Q., Chen, J., Lu, Y., Ren, X., Liu, Q., Wen, L., & Mateen, M. (2022). Enhanced removal of ibuprofen in water using dynamic dialysis of laccase catalysis. Journal of Water Process Engineering, 47, 102791. https://doi.org/10.1016/J.JWPE.2022.102791 Zheng, F., Cui, B. K., Wu, X. J., Meng, G., Liu, H. X., & Si, J. (2016). Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration and Biodegradation, 110, 69–78. https://doi.org/10.1016/j.ibiod.2016.03.004 Zhuo, R., & Fan, F. (2021). A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. The Science of the Total Environment, 778. https://doi.org/10.1016/J.SCITOTENV.2021.146132 Żur, J., Piński, A., Marchlewicz, A., Hupert-Kocurek, K., Wojcieszyńska, D., & Guzik, U. (2018). Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. In Environmental Science and Pollution Research (Vol. 25, Issue 22, pp. 21498–21524). Springer Verlag. https://doi.org/10.1007/s11356-018-2517-x |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
135 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Ciencias Farmacéuticas y Alimentarias |
| dc.publisher.department.none.fl_str_mv |
Departamento de Extensión y Posgrados |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Farmacéuticas y Alimentarias |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/001e0d68-eddf-4fa3-ac96-a0c5f9998c69/download https://bibliotecadigital.udea.edu.co/bitstreams/744cdd5f-7129-46a6-a23a-b2be140b3acf/download https://bibliotecadigital.udea.edu.co/bitstreams/c2ad6211-f390-4ed1-ba71-4d5f273de053/download https://bibliotecadigital.udea.edu.co/bitstreams/5f928015-e3a4-4b7f-846d-7696f32517be/download https://bibliotecadigital.udea.edu.co/bitstreams/a734ec21-4886-4528-8a37-6d398d87d892/download |
| bitstream.checksum.fl_str_mv |
5643bfd9bcf29d560eeec56d584edaa9 b76e7a76e24cf2f94b3ce0ae5ed275d0 9e1e786c62f1a489b949f109255c78c8 ddbbb59287f9e427ab1e4f58957bb7e7 594185cd49e5f357d66d1c3ecbea9d11 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052512439697408 |
| spelling |
Segura Sánchez, FreimarLópez Legarda, XiomaraFlórez Restrepo, María AlejandraBIOPOLIMERCinto, Isabel EstherHernández Luna, Carlos Eduardo2025-10-08T12:52:12Z2023https://hdl.handle.net/10495/47590El agua de buena calidad es esencial para mantener el bienestar humano y el equilibrio ecológico de los ecosistemas con miras al desarrollo sostenible. Una subclase de productos químicos orgánicos que se detectan cada vez con más frecuencia en cuerpos de agua y que son de importancia porque alteran negativamente los ecosistemas se han clasificado como contaminantes emergentes. Entre ellos, se encuentran bajo especial atención algunos compuestos farmacéuticos porque poseen actividad biológica y algunos de alto consumo como el acetaminofén e ibuprofeno, se están liberando en grandes cantidades al ambiente. Debido a esto, se están desarrollando y estudiando diversos métodos y técnicas para degradar contaminantes, entre los cuales, se han evaluado diferentes tipos de enzimas con capacidad oxidativa. Entre los diversos organismos estudiados en biorremediación, los hongos han llamado particular atención, y entre ellos, los que producen pudrición blanca de la madera gracias a sus enzimas ligninolíticas que han sido las más promisorias y estudiadas. Si bien, las enzimas libres tienen aplicabilidad, la investigación de enzimas inmovilizadas es de gran interés industrial, debido al hecho de que éstas pueden ser utilizadas por más de un ciclo catalítico, es decir, reutilizarse manteniendo una eficiencia satisfactoria o incluso utilizarse en procesos en continuo. Inicialmente, se estudió la producción de enzimas ligninolíticas de 17 hongos de la podredumbre blanca previamente aislados en un bosque húmedo tropical colombiano, incubando los cultivos durante 6 semanas en un medio liquido rico en material ligninocelulósico compuesto de residuos agroindustriales. Se encontraron principalmente géneros de Ganoderma spp. y Lentinus sp., con la capacidad de producir lacasa y manganeso peroxidasa. En la siguiente etapa, se realizó producción enzimática cultivando el aislado Ganoderma parvulum en biorreactor de 5L. Posteriormente, las enzimas se purificaron parcialmente y se inmovilizaron de manera covalente en microesferas de quitosano. Para tal fin, las microesferas obtenidas fueron activadas utilizando un agente entrecruzante y puestas en contacto con el extracto enzimático. Se encontró que entre los parámetros evaluados se obtuvo mayor eficiencia de inmovilización con 10% de glutaraldehído, 60 minutos de tiempo de reticulación y 10.000 U/L de lacasas. Además, se evaluó la estabilidad operativa de las macropartículas con enzimas y la aplicación de éstas en la biotransformación de acetaminofén e ibuprofeno. Encontrando hasta un 98% de biosorción/biotransformación del acetaminofén asociado a las enzimas inmovilizadas después de cuatro horas de reacción. Concluyendo así en la posible utilidad del sistema evaluado en tratamientos de biorremediación, debido a que este estudio proporcionó un enfoque de tratamiento para degradar contaminantes emergentes como fármacos de alto consumo como acetaminofén e ibuprofeno, con una alta eficacia, resultados que son buscados debido a la presencia ubicua de estos fármacos en la naturaleza y sus propiedades toxicológicas en el ambiente. No se descarta la capacidad del sistema para degradar muchos otros tipos de contaminantes presentes en cuerpos de agua ya que existen reportes de la capacidad de las enzimas ligninolíticas para degradar otros tipos de compuestos como colorantes, pesticidas, disruptores endocrinos, entre otros.Good water quality is essential to maintain human well-being and the ecological balance of ecosystems with a view to sustainable development. A subclass of organic chemicals that are being detected with increasing frequency in water bodies and that are of importance because they negatively alter ecosystems, have been classified as emerging pollutants; Among them, some pharmaceutical products are under special attention because they have biological activity and some of high consumption, as acetaminophen and ibuprofen, are being released in large quantities into the environment. Due to this, various methods and techniques have been developed and studied to degrade contaminants, among which, different types of enzymes with oxidative capacity have been evaluated. Fungi have drawn particular attention, and among them, those that produce white-rot thanks to their ligninolytic enzymes, the most promising and studied. Although, as free enzymes have applicability, research on immobilized enzymes is of great industrial interest, due to the fact that they can be used for more than one catalytic cycle, that is, reused while maintaining satisfactory efficiency or even used in continuous processes. Initially, the production of ligninolytic enzymes was studied, by 17 white-rot fungi previously isolated in a Colombian tropical humid forest, incubating the cultures for 6 weeks in liquid medium rich in ligninocellulosic material composed of agro-industrial waste. Mainly genera of Ganoderma spp., and Lentinus sp. were found, with the ability to produce laccase and manganese peroxidase. In the next stage, enzyme production was carried out cultivating the Ganoderma parvulum isolate in a 5L bioreactor. Subsequently, the enzymes were partially purified and covalently immobilized on chitosan microspheres. For this purpose, the microspheres obtained were activated using a crosslinking agent and placed in contact with the enzyme extract. It was found that among the parameters evaluated, the best immobilization efficiency was obtained with 10% glutaraldehyde, 60 minutes of crosslinking time and 10,000 U/L of laccase. In addition, the operational stability of the microparticles with enzymes and their application in the biotransformation of acetaminophen and ibuprofen were evaluated. Finding up to 98% biosorption/biotransformation of acetaminophen associated with immobilized enzymes after four hours of reaction. Thus, concluding in the possible usefulness of the evaluated system in bioremediation treatments, because this study has an approach to degrade emerging contaminants such as high-consumption drugs like acetaminophen with high efficacy, results that are sought due to the ubiquitous presence of this drugs in nature and their toxicological properties in the environment. The ability of the system to degrade many other types of pollutants present in bodies of water is not ruled out, since there are reports of the ability of ligninolytic enzymes to degrade other types of compounds as dyes, pesticides, endocrine disruptors, among others.Evaluación del potencial ligninolítico de varias especies de hongos basidiomicetos y bioprocesos para aplicaciones biotecnológicasEvaluación del potencial de hongos de Colombia para el desarrollo de bioprocesos y la obtención de metabolitos para aplicaciones biotecnológicas, farmacéuticas, cosméticas y alimentariasBiotecnologíaCOL0065152El presente trabajo de investigación, realizado en el marco del programa de Maestría en Ciencias Farmacéuticas y Alimentarias, línea Biotecnología, ha dado lugar a los siguientes productos de divulgación y reconocimientos: Publicaciones científicas derivadas: • Flórez-Restrepo, M. A., López-Legarda, X., Rostro-Alanis, M. de J., Parra-Saldívar, R., & Segura-Sánchez, F. (2025). Biotransformation of Acetaminophen by Ganoderma parvulum Ligninolytic Enzymes Immobilized on Chitosan Microspheres. Fermentation, 11(7), 387. https://doi.org/10.3390/FERMENTATION11070387 • Flórez-Restrepo, M. A., López-Legarda, X., & Segura-Sánchez, F. (2025). Bioremediation of emerging pharmaceutical pollutants acetaminophen and ibuprofen by white-rot fungi – A review. Science of The Total Environment, 977, 179379. https://doi.org/10.1016/J.SCITOTENV.2025.179379 Eventos de divulgación científica: • Parte de los resultados de esta investigación fueron presentados en el XI Congreso Latinoamericano de Micología, celebrado en la ciudad de Panamá (República de Panamá), del 7 al 10 de agosto de 2023, organizado por la Asociación Latinoamericana de Micología. Reconocimiento académico: • Este trabajo fue evaluado por un jurado internacional conformado por académicos de Argentina y México, y recibió la máxima calificación. Los jurados recomendaron otorgar la distinción Summa Cum Laude, la cual fue aprobada por el programa de posgrado. • Obtuvo un reconocimiento en Accésit (segundo lugar) en la modalidad de Mejor Trabajo Fin de Máster en el área Científico-Técnica en los XVI Premios Iberoamericanos La Rábida 2024, convocados por el Grupo de Universidades Iberoamericanas La Rábida, en colaboración con la Universidad Internacional de Andalucía (España) y la Fundación Cajasol, entre 103 postulaciones evaluadas.MaestríaMagíster en Ciencias Farmacéuticas y Alimentarias135 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en Ciencias Farmacéuticas y AlimentariasDepartamento de Extensión y PosgradosMedellín, ColombiaFacultad de Ciencias Farmacéuticas y AlimentariasCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Inmovilización covalente en quitosano de enzimas ligninolíticas obtenidas a partir de hongos de la podredumbre blanca y su aplicación en la degradación de contaminantes emergentes como acetaminofén e ibuprofenoCovalent immobilization in chitosan of ligninolytic enzymes obtained from white-rot fungi and their application in the degradation of emerging contaminants such as acetaminophen and ibuprofenTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAfreen, S., Anwer, R., Singh, R. K., & Fatma, T. (2018). Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi Journal of Biological Sciences, 25(7), 1446–1453. https://doi.org/10.1016/j.sjbs.2016.01.015Agrawal, K., Bhardwaj, N., Kumar, B., Chaturvedi, V., & Verma, P. (2019). Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. International Journal of Biological Macromolecules, 125, 1042–1055. https://doi.org/10.1016/J.IJBIOMAC.2018.12.108Águila Puentes, S. A. (2010). “Inmovilización de Proteínas con Actividad Peroxidasa en Nanoestructuras y sus Aplicaciones Sobre Reacciones de Epoxidación de Olefinas” Tesis de maestría [Universidad de Concepción]. http://repositorio.conicyt.cl/bitstream/handle/10533/180266/AGUILA_SERGIO_0976D.pdf?sequence=1Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Thomaidis, N. S., & Xu, J. (2017). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 323, 274–298. https://doi.org/10.1016/J.JHAZMAT.2016.04.045Akerman-Sanchez, G., & Rojas-Jimenez, K. (2021). Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment. Environmental Advances, 4, 100071. https://doi.org/10.1016/J.ENVADV.2021.100071Alvarado-Ramírez, L., Rostro-Alanis, M., Rodríguez-Rodríguez, J., Castillo-Zacarías, C., Sosa-Hernández, J. E., Barceló, D., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Exploring current tendencies in techniques and materials for immobilization of laccases – A review. International Journal of Biological Macromolecules, 181, 683–696. https://doi.org/10.1016/j.ijbiomac.2021.03.175Alvarado Ramírez, L. (2015). Inmovilización de lacasas en esferas de SiO2 para la degradación de Rojo Congo [Universidad Autonoma de Nuevo León]. https://core.ac.uk/download/pdf/76602417.pdfArboleda Echavarría, C., Mejía Gallón, A. I., Franco Molano, A. E., Jiménez Tobón, G. A., & Penninckx, M. (2008). Autochthonous white rot fungi from the tropical forest of Colombia for dye decolourisation and ligninolytic enzymes production. SYDOWIA - An International Journal of Mycology, 60(2), 165–180. http://www.sydowia.at/syd60-2/T1-Arboleda.htmAricov, L., Leonties, A. R., Gîfu, I. C., Preda, D., Raducan, A., & Anghel, D. F. (2020). Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants. Journal of Environmental Management, 276, 111326. https://doi.org/10.1016/J.JENVMAN.2020.111326Asgher, M., Noreen, S., & Bilal, M. (2017). Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres. Chemical Engineering Research and Design, 119, 1–11. https://doi.org/10.1016/j.cherd.2016.12.011Aslam, S., Asgher, M., Khan, N. A., & Bilal, M. (2021). Immobilization of Pleurotus nebrodensis WC 850 laccase on glutaraldehyde cross-linked chitosan beads for enhanced biocatalytic degradation of textile dyes. Journal of Water Process Engineering, 40, 101971. https://doi.org/10.1016/J.JWPE.2021.101971Bagewadi, Z. K., Mulla, S. I., & Ninnekar, H. Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal of Genetic Engineering and Biotechnology, 15(1), 139–150. https://doi.org/10.1016/j.jgeb.2017.01.007Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Muñoz-Gutiérrez, B. D., Iqbal, H. M. N., Kannan, S., & Parra-Saldívar, R. (2018). Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation – A review. Science of The Total Environment, 612, 1516–1531. https://doi.org/10.1016/J.SCITOTENV.2017.09.013Belhaj, D., Baccar, R., Jaabiri, I., Bouzid, J., Kallel, M., Ayadi, H., & Zhou, J. L. (2015). Fate of selected estrogenic hormones in an urban sewage treatment plant in Tunisia (North Africa). Science of the Total Environment, 505, 154–160. https://doi.org/10.1016/j.scitotenv.2014.10.018Biko, O. D. V., Viljoen-Bloom, M., & van Zyl, W. H. (2020). Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme and Microbial Technology, 141, 109669. https://doi.org/10.1016/J.ENZMICTEC.2020.109669Bilal, M., Adeel, M., Rasheed, T., Zhao, Y., & Iqbal, H. M. N. (2019). Emerging contaminants of high concern and their enzyme-assisted biodegradation – A review. In Environment International (Vol. 124, pp. 336–353). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.01.011Bilal, M., Iqbal, M., Hu, H., & Zhang, X. (2016). Mutagenicity and cytotoxicity assessment of biodegraded textile effluent by Ca-alginate encapsulated manganese peroxidase. Biochemical Engineering Journal, 109, 153–161. https://doi.org/10.1016/J.BEJ.2016.01.020Bilal, M., Jing, Z., Zhao, Y., & Iqbal, H. M. N. (2019). Immobilization of fungal laccase on glutaraldehyde cross-linked chitosan beads and its bio-catalytic potential to degrade bisphenol A. Biocatalysis and Agricultural Biotechnology, 19, 101174. https://doi.org/10.1016/j.bcab.2019.101174Bilal, M., Zdarta, J., Jesionowski, T., & Iqbal, H. M. N. (2023). Manganese peroxidases as robust biocatalytic tool — An overview of sources, immobilization, and biotechnological applications. International Journal of Biological Macromolecules, 123531. https://doi.org/10.1016/J.IJBIOMAC.2023.123531Borges, K. B., De Oliveira, A. R. M., Barth, T., Jabor, V. A. P., Pupo, M. T., & Bonato, P. S. (2011). LC-MS-MS determination of ibuprofen, 2-hydroxyibuprofen enantiomers, and carboxyibuprofen stereoisomers for application in biotransformation studies employing endophytic fungi. Analytical and Bioanalytical Chemistry, 399(2), 915–925. https://doi.org/10.1007/S00216-010-4329-9Cen, Q., Wu, X., Cao, L., Lu, Y., Lu, X., Chen, J., Fu, G., Liu, Y., & Ruan, R. (2022). Green production of a yellow laccase by Coriolopsis gallica for phenolic pollutants removal. AMB Express, 12(1), 1–15. https://doi.org/10.1186/S13568-022-01434-6/FIGURES/8Chandra, R., & Kumar, V. (2017). Extremophilic Ligninolytic Enzymes. In R. Sani & N. Krishnaraj (Eds.), Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy (First). Springer . https://www.researchgate.net/publication/313799342_Extremophilic_Ligninolytic_EnzymesChávez-Sifontes, M., & Domine, M. E. (2013). Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial . Avances En Ciencias e Ingeniería , 4(4), 15–46. https://www.redalyc.org/pdf/3236/323629266003.pdfChopra, S., & Kumar, D. (2020). Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon, 6(6), e04087. https://doi.org/10.1016/J.HELIYON.2020.E04087Chu-Wen, Y., Yi-En, C., & Bea Ven, C. (2020). Microbial Communities Associated with Acetaminophen Biodegradation from Mangrove Sediment. Sustainability 2020, Vol. 12, Page 5410, 12(13), 5410. https://doi.org/10.3390/SU12135410Cifuentes, A. D., & Rojas, D. M. (2005). Inmovilizacion de lipasa Candida rugosa en soporte de quitosano [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/bitstream/handle/unal/2750/alidavidcifuentesdianamaritzarojas.2005.pdf?sequence=1&isAllowed=yde Lima, D. P., dos Santos, E. dos A., Marques, M. R., Giannesi, G. C., Beatriz, A., Yonekawa, M. K. A., & Montanholi, A. dos S. (2018). Fungal bioremediation of pollutant aromatic amines. Current Opinion in Green and Sustainable Chemistry, 11, 34–44. https://doi.org/10.1016/J.COGSC.2018.03.012Debnath, R., & Saha, T. (2020). An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatalysis and Agricultural Biotechnology, 26, 101645. https://doi.org/10.1016/J.BCAB.2020.101645Deska, M., & Kończak, B. (2019). Immobilized fungal laccase as “green catalyst” for the decolourization process – State of the art. In Process Biochemistry (Vol. 84, pp. 112–123). Elsevier Ltd. https://doi.org/10.1016/j.procbio.2019.05.024Ding, T., Yang, M., Zhang, J., Yang, B., Lin, K., Li, J., & Gan, J. (2017). Toxicity, degradation and metabolic fate of ibuprofen on freshwater diatom Navicula sp. Journal of Hazardous Materials, 330, 127–134. https://doi.org/10.1016/J.JHAZMAT.2017.02.004Ding, Y., Cui, K., Liu, X., Xie, Q., Guo, Z., & Chen, Y. (2022). Lignin peroxidase-catalyzed direct oxidation of trace organic pollutants through a long-range electron transfer mechanism: Using propranolol as an example. Journal of Hazardous Materials, 431, 128544. https://doi.org/10.1016/J.JHAZMAT.2022.128544DrugBank. (2023a). Acetaminophen: Uses, Interactions, Mechanism of Action | DrugBank Online. https://go.drugbank.com/drugs/DB00316DrugBank. (2023b). Ibuprofen: Uses, Interactions, Mechanism of Action | DrugBank Online. https://go.drugbank.com/drugs/DB01050El Knidri, H., Laajeb, A., & Lahsini, A. (2020). Chitin and chitosan: chemistry, solubility, fiber formation, and their potential applications. In S. Thomas, A. Pius, & S. Gopi (Eds.), Handbook of Chitin and Chitosan (1st ed., Vol. 3, pp. 35–57). Elsevier. https://doi.org/10.1016/B978-0-12-817970-3.00002-XEnayatzamir, K., Alikhani, H. A., & Rodríguez Couto, S. (2009). Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. Journal of Hazardous Materials, 164(1), 296–300. https://doi.org/10.1016/J.JHAZMAT.2008.08.032Enzymes Global Market Report. (2023, February). Market Report. https://www.reportlinker.com/p06241900/Enzymes-Global-Market-Report.html?utm_source=GNWFlaticon. (2023). Iconos vectoriales y stickers - PNG, SVG, EPS, PSD y CSS - designed by Freepik, Eucalyp and yoyonpujiono from Flaticon. https://www.flaticon.es/Garzón, J. M., Pablo Rodríguez-Miranda, J., & Org, O. (2017). Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible Contribution of bioremediation to solve pollution problems and its relationship with sustainable development. Revista Universidad y Salud, 19, 309–318. https://doi.org/10.22267/rus.171902.93Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee, S. E. A. T. M., & Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002Gomes, I. B., Simões, L. C., & Simões, M. (2018). The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Science of the Total Environment, 643, 1348–1356. https://doi.org/10.1016/j.scitotenv.2018.06.263Gong, H., Chu, W., Lam, S. H., & Lin, A. Y. C. (2017). Ibuprofen degradation and toxicity evolution during Fe2+/Oxone/UV process. Chemosphere, 167, 415–421. https://doi.org/10.1016/J.CHEMOSPHERE.2016.10.027González-González, R. B., Flores-Contreras, E. A., Parra-Saldívar, R., & Iqbal, H. M. N. (2022). Bio-removal of emerging pollutants by advanced bioremediation techniques. Environmental Research, 214, 113936. https://doi.org/10.1016/J.ENVRES.2022.113936Hoinacki Da Silva, C. K., Polidoro, A. S., Cabrera Ruschel, P. M., Thue, P. S., Jacques, R. A., Lima, É. C., Bussamara, R., & Fernandes, A. N. (2022). Laccase covalently immobilized on avocado seed biochar: A high-performance biocatalyst for acetaminophen sorption and biotransformation. Journal of Environmental Chemical Engineering, 10(3), 107731. https://doi.org/10.1016/J.JECE.2022.107731Hu, J., Zhang, L. L., Chen, J. M., & Liu, Y. (2013). Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 48(7), 791–799. https://doi.org/10.1080/10934529.2013.744650Jain, M., Khan, S. A., Sharma, K., Jadhao, P. R., Pant, K. K., Ziora, Z. M., & Blaskovich, M. A. T. (2022). Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater. Bioresource Technology, 344, 126305. https://doi.org/10.1016/J.BIORTECH.2021.126305Jeong, D., & Choi, K. Y. (2020). Biodegradation of Tetracycline Antibiotic by Laccase Biocatalyst Immobilized on Chitosan-Tripolyphosphate Beads. Applied Biochemistry and Microbiology, 56(3), 306–312. https://doi.org/10.1134/S0003683820030047/TABLES/1Ji, C., Hou, J., & Chen, V. (2016). Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration. Journal of Membrane Science, 520, 869–880. https://doi.org/10.1016/j.memsci.2016.08.056Kirk, T. K., Croan, S., Tien, M., Murtagh, K. E., & Farrell, R. L. (1986). Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme and Microbial Technology, 8(1), 27–32. https://doi.org/10.1016/0141-0229(86)90006-2Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, 6(2), e03170. https://doi.org/10.1016/J.HELIYON.2020.E03170Li, J., Ye, Q., & Gan, J. (2014). Degradation and transformation products of acetaminophen in soil. Water Research, 49, 44–52. https://doi.org/10.1016/J.WATRES.2013.11.008Liu, Z. H., Le, R. K., Kosa, M., Yang, B., Yuan, J., & Ragauskas, A. J. (2019). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362. https://doi.org/10.1016/J.RSER.2019.02.009López-Legarda, X. (2021). Producción, caracterización y actividad biológica de polisacáridos fúngicos [Universidad de Antioquia]. https://bibliotecadigital.udea.edu.co/handle/10495/22401López-Legarda, X., Arboleda-Echavarría, C., & Segura-Sanchez, F. (2015). Producción de polisacáridos a partir de Ganoderma sp., aislado en la región andina. Revista Colombiana de Biotecnología, 17(2), 44–54. https://doi.org/10.15446/rev.colomb.biote.v17n2.47060Lu, H., Yadav, V., Bilal, M., & Iqbal, H. M. N. (2022). Bioprospecting microbial hosts to valorize lignocellulose biomass – Environmental perspectives and value-added bioproducts. Chemosphere, 288, 132574. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132574Lu, L., Zhao, M., & Wang, Y. (2006). Immobilization of laccase by alginate-chitosan microcapsules and its use in dye decolorization. World Journal of Microbiology and Biotechnology, 23(2), 159–166. https://doi.org/10.1007/s11274-006-9205-6Luo, Y., Guo, W., Ngo, H. H., Nghiem, L. D., Hai, F. I., Zhang, J., Liang, S., & Wang, X. C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Science of the Total Environment, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065Manavalan, T., Manavalan, A., & Heese, K. (2014). Characterization of Lignocellulolytic Enzymes from White-Rot Fungi. Current Microbiology, 70(4), 485–498. https://doi.org/10.1007/s00284-014-0743-0Marchlewicz, A., Guzik, U., & Wojcieszyńska, D. (2015). Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment - Sources, Risks, Biodegradation. Water, Air, and Soil Pollution, 226(10), 1–13. https://doi.org/10.1007/s11270-015-2622-0Mathias, J. (2018, July 16). FTIR Analysis Beginner’s Guide: Interpreting Results | Innovatech. A Beginner’s Guide to FTIR Analysis: Interpreting & Analyzing Results. https://www.innovatechlabs.com/newsroom/1882/interpreting-analyzing-ftir-results/Mehandia, S., Ahmad, S., Sharma, S. C., & Arya, S. K. (2022). Decolorization and detoxification of textile effluent by immobilized laccase-ACS into chitosan-clay composite beads using a packed bed reactor system: An ecofriendly approach. Journal of Water Process Engineering, 47, 102662. https://doi.org/10.1016/J.JWPE.2022.102662Ministerio de ambiente y desarrollo sostenible. (2019, May 21). Colombia, el segundo país más biodiverso del mundo, celebra el Día Mundial de la Biodiversidad - Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/bosques-biodiversidad-y-servicios-ecosistemicos/colombia-el-segundo-pais-mas-biodiverso-del-mundo-celebra-el-dia-mundial-de-la-biodiversidad/Mir-Tutusaus, J. A., Baccar, R., Caminal, G., & Sarrà, M. (2018). Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. In Water Research (Vol. 138, pp. 137–151). Elsevier Ltd. https://doi.org/10.1016/j.watres.2018.02.056Morsi, R., Bilal, M., Iqbal, H. M. N., & Ashraf, S. S. (2020). Laccases and peroxidases: The smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. In Science of the Total Environment (Vol. 714, p. 136572). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2020.136572Murdoch, R. W., & Hay, A. G. (2015). The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation, 26(2), 105–113. https://doi.org/10.1007/s10532-015-9719-4Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2017). Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. Science of The Total Environment, 584–585, 393–401. https://doi.org/10.1016/J.SCITOTENV.2017.01.021Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018, March 1). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution, 234, 190–213. https://doi.org/10.1016/j.envpol.2017.11.060Naidu, R., Arias Espana, V. A., Liu, Y., & Jit, J. (2016). Emerging contaminants in the environment: Risk-based analysis for better management. Chemosphere, 154, 350–357. https://doi.org/10.1016/J.CHEMOSPHERE.2016.03.068Nayak, B., & Choudhary, R. (2022). Optimization, purification and characterization of laccase from lignocellulolytic fungi Dichotomopilus funicola NFCCI 4534 and Alternaria padwickii NFCCI 4535. Biocatalysis and Agricultural Biotechnology, 42, 102344. https://doi.org/10.1016/J.BCAB.2022.102344Nguyen, T. A., Fu, C. C., & Juang, R. S. (2016). Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads. Chemical Engineering Journal, 304, 313–324. https://doi.org/10.1016/J.CEJ.2016.06.102Noor-Arbaain, E. N., Kamal-Bahrin, E., Mohd-Noor, N., Faizal-Ibrahim, M., Ramli, N., & Abd-Aziz, S. (2019). Chemical-free pretreatment of unwashed oil palm empty fruit bunch by using locally isolated fungus (Schizophyllum commune ENN1) for delignification. Food and Bioproducts Processing, 118, 207–216. https://doi.org/10.1016/J.FBP.2019.09.001Olajuyigbe, F. M., & Fatokun, C. O. (2017). Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. International Journal of Biological Macromolecules, 94, 535–543. https://doi.org/10.1016/J.IJBIOMAC.2016.10.037Orlikowska, M., de J. Rostro-Alanis, M., Bujacz, A., Hernández-Luna, C., Rubio, R., Parra, R., & Bujacz, G. (2018). Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. International Journal of Biological Macromolecules, 107, 1629–1640. https://doi.org/10.1016/J.IJBIOMAC.2017.10.024Othman, A. M., Mahmoud, M., Abdelraof, M., Abdel Karim, G. S. A., & Elsayed, A. M. (2021). Enhancement of laccase production from a newly isolated Trichoderma harzianum S7113 using submerged fermentation: Optimization of production medium via central composite design and its application for hydroquinone degradation. International Journal of Biological Macromolecules, 192, 219–231. https://doi.org/10.1016/J.IJBIOMAC.2021.09.207Pandey, V. P., Rani, J., Jaiswal, N., Singh, S., Awasthi, M., Shasany, A. K., Tiwari, S., & Dwivedi, U. N. (2017). Chitosan immobilized novel peroxidase from Azadirachta indica: Characterization and application. International Journal of Biological Macromolecules, 104, 1713–1720. https://doi.org/10.1016/J.IJBIOMAC.2017.02.047Parolini, M., Binelli, A., & Provini, A. (2011). Chronic effects induced by ibuprofen on the freshwater bivalve Dreissena polymorpha. Ecotoxicology and Environmental Safety, 74(6), 1586–1594. https://doi.org/10.1016/j.ecoenv.2011.04.025Parra Guardado, A. L. (2019). Enzymatic degradation of recalcitrant pharmaceutical micropollutants [Université de Montpellier]. https://tel.archives-ouvertes.fr/tel-02286745Piedade, F., Bio, S., & Nunes, B. (2020). Effects of common pharmaceutical drugs (paracetamol and acetylsalicylic acid) short term exposure on biomarkers of the mussel Mytilus spp. Environmental Toxicology and Pharmacology, 73, 103276. https://doi.org/10.1016/j.etap.2019.103276Poddar, K., Sarkar, D., Chakraborty, D., Patil, P. B., Maity, S., & Sarkar, A. (2022). Paracetamol biodegradation by Pseudomonas strain PrS10 isolated from pharmaceutical effluents. International Biodeterioration & Biodegradation, 175, 105490. https://doi.org/10.1016/J.IBIOD.2022.105490Prinz, A., Koch, K., Górak, A., & Zeiner, T. (2014). Multi-stage laccase extraction and separation using aqueous two-phase systems: Experiment and model. Process Biochemistry, 49(6), 1020–1031. https://doi.org/10.1016/J.PROCBIO.2014.03.011PubChem. (2023). Acetaminophen | C8H9NO2 - PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Acetaminophen#section=SolubilityQiu, X., Wang, S., Miao, S., Suo, H., Xu, H., & Hu, Y. (2021). Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. Journal of Hazardous Materials, 401, 123353. https://doi.org/10.1016/J.JHAZMAT.2020.123353Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., & Iqbal, H. M. N. (2019). Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environment International, 122, 52–66. https://doi.org/10.1016/j.envint.2018.11.038Ratanapongleka, K., & Punbut, S. (2017). Removal of acetaminophen in water by laccase immobilized in barium alginate. Environmental Technology (United Kingdom), 39(3), 336–345. https://doi.org/10.1080/09593330.2017.1301563Rezaei, S., Shahverdi, A. R., & Faramarzi, M. A. (2017). Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresource Technology, 230, 67–75. https://doi.org/10.1016/J.BIORTECH.2017.01.036Sai Preethi, P., Hariharan, N. M., Vickram, S., Rameshpathy, M., Manikandan, S., Subbaiya, R., Karmegam, N., Yadav, V., Ravindran, B., Chang, S. W., & Kumar Awasthi, M. (2022). Advances in bioremediation of emerging contaminants from industrial wastewater by oxidoreductase enzymes. Bioresource Technology, 359, 127444. https://doi.org/10.1016/J.BIORTECH.2022.127444Sharma, A., Thatai, K. S., Kuthiala, T., Singh, G., & Arya, S. K. (2021). Employment of polysaccharides in enzyme immobilization. Reactive and Functional Polymers, 167, 105005. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.105005Shokri, Z., Seidi, F., Karami, S., Li, C., Saeb, M. R., & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers, 262, 117963. https://doi.org/10.1016/J.CARBPOL.2021.117963Songulashvili, G., Flahaut, S., Demarez, M., Tricot, C., Bauvois, C., Debaste, F., & Penninckx, M. J. (2016). High yield production in seven days of Coriolopsis gallica 1184 laccase at 50 L scale; enzyme purification and molecular characterization. Fungal Biology, 120(4), 481–488. https://doi.org/10.1016/J.FUNBIO.2016.01.008Stadlmair, L. F., Letzel, T., Drewes, J. E., & Graßmann, J. (2017). Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes. Chemosphere, 174, 466–477. https://doi.org/10.1016/j.chemosphere.2017.01.140Sundararaman, S., Aravind Kumar, J., Deivasigamani, P., & Devarajan, Y. (2022). Emerging pharma residue contaminants: Occurrence, monitoring, risk and fate assessment – A challenge to water resource management. Science of The Total Environment, 825, 153897. https://doi.org/10.1016/J.SCITOTENV.2022.153897Suryadi, H., Judono, J. J., Putri, M. R., Eclessia, A. D., Ulhaq, J. M., Agustina, D. N., & Sumiati, T. (2022). Biodelignification of lignocellulose using ligninolytic enzymes from white-rot fungi. Heliyon, 8(2), e08865. https://doi.org/10.1016/J.HELIYON.2022.E08865Torrez Monroy, G. P. (2015). Producción y purificación de enzimas celulolíticas, lacasas y manganeso peroxidasas de tres cepas fúngicas nativas (IB-105,GL-9B Y co-1) [Universidad Mayor de San Andres ]. http://repositorio.umsa.bo/xmlui/handle/123456789/17961Tran, N. H., Urase, T., & Kusakabe, O. (2010). Biodegradation Characteristics of Pharmaceutical Substances by Whole Fungal Culture Trametes versicolor and its Laccase. Journal of Water and Environment Technology, 8(2), 125–140. https://doi.org/10.2965/jwet.2010.125UNESCO. (2015). Contaminantes emergentes en la reutilización de aguas residuales en los países en desarrollo. Iniciativa Internacional Sobre La Calidad Del Agua (IIWQ) Programa Hidrologico Internacional de La UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000235241_spaUnuofin, J. O., Okoh, A. I., & Nwodo, U. U. (2019). Aptitude of oxidative enzymes for treatment of wastewater pollutants: A laccase perspective. In Molecules (Vol. 24, Issue 11). MDPI AG. https://doi.org/10.3390/molecules24112064Varga, B., Somogyi, V., Meiczinger, M., Kováts, N., & Domokos, E. (2019). Enzymatic treatment and subsequent toxicity of organic micropollutants using oxidoreductases - A review. Journal of Cleaner Production, 221, 306–322. https://doi.org/10.1016/J.JCLEPRO.2019.02.135Vasiliadou, I. A., Molina, R., Pariente, M. I., Christoforidis, K. C., Martinez, F., & Melero, J. A. (2019). Understanding the role of mediators in the efficiency of advanced oxidation processes using white-rot fungi. Chemical Engineering Journal, 359, 1427–1435. https://doi.org/10.1016/J.CEJ.2018.11.035Velásquez-Quintero, C., Merino-Restrepo, A., & Hormaza-Anaguano, A. (2022). Production, extraction, and quantification of laccase obtained from an optimized solid-state fermentation of corncob with white-rot fungi. Journal of Cleaner Production, 370, 133598. https://doi.org/10.1016/J.JCLEPRO.2022.133598Voběrková, S., Solčány, V., Vršanská, M., & Adam, V. (2018). Immobilization of ligninolytic enzymes from white-rot fungi in cross-linked aggregates. In Chemosphere (Vol. 202, pp. 694–707). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2018.03.088Wang, S. S., Ning, Y. J., Wang, S. N., Zhang, J., Zhang, G. Q., & Chen, Q. J. (2017). Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01. International Journal of Biological Macromolecules, 95, 920–927. https://doi.org/10.1016/J.IJBIOMAC.2016.10.079Wang, Y., Vazquez-Duhalt, R., & Pickard, M. A. (2005). Purification, characterization, and chemical modification of manganese peroxidase from Bjerkandera adusta UAMH 8258. Current Microbiology, 45(2), 77–87. https://doi.org/10.1007/s00284-001-0081-xXu, J. J., Hendriks, B. S., Zhao, J., & de Graaf, D. (2008). Multiple effects of acetaminophen and p38 inhibitors: Towards pathway toxicology. FEBS Letters, 582(8), 1276–1282. https://doi.org/10.1016/j.febslet.2008.01.063Zhang, H., Zhang, J., Zhang, X., & Geng, A. (2018). Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process Biochemistry, 66, 222–229. https://doi.org/10.1016/J.PROCBIO.2017.12.011Zhang, J., Cai, Q., Chen, J., Lu, Y., Ren, X., Liu, Q., Wen, L., & Mateen, M. (2022). Enhanced removal of ibuprofen in water using dynamic dialysis of laccase catalysis. Journal of Water Process Engineering, 47, 102791. https://doi.org/10.1016/J.JWPE.2022.102791Zheng, F., Cui, B. K., Wu, X. J., Meng, G., Liu, H. X., & Si, J. (2016). Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. International Biodeterioration and Biodegradation, 110, 69–78. https://doi.org/10.1016/j.ibiod.2016.03.004Zhuo, R., & Fan, F. (2021). A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. The Science of the Total Environment, 778. https://doi.org/10.1016/J.SCITOTENV.2021.146132Żur, J., Piński, A., Marchlewicz, A., Hupert-Kocurek, K., Wojcieszyńska, D., & Guzik, U. (2018). Organic micropollutants paracetamol and ibuprofen—toxicity, biodegradation, and genetic background of their utilization by bacteria. In Environmental Science and Pollution Research (Vol. 25, Issue 22, pp. 21498–21524). Springer Verlag. https://doi.org/10.1007/s11356-018-2517-xImpacto ambientalEnvironmental ImpactPodredumbre blanca (madera)white rot (wood)BiodegradaciónbiodegradationHongos de la podredumbre blancaEnzimas ligninolíticasContaminantes emergentesInmovilización en quitosanoLigninolytic enzymesEmerging contaminantsChitosan immobilizationhttp://aims.fao.org/aos/agrovoc/c_25100http://aims.fao.org/aos/agrovoc/c_9261ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sosteniblesODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenibleODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidadPublication119,999,250 COPCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/001e0d68-eddf-4fa3-ac96-a0c5f9998c69/download5643bfd9bcf29d560eeec56d584edaa9MD51falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/744cdd5f-7129-46a6-a23a-b2be140b3acf/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADORIGINALFlorezMaria_2023_Inmovilizacion_Enzimas_Degradacion.pdfFlorezMaria_2023_Inmovilizacion_Enzimas_Degradacion.pdfTesis de maestríaapplication/pdf3054778https://bibliotecadigital.udea.edu.co/bitstreams/c2ad6211-f390-4ed1-ba71-4d5f273de053/download9e1e786c62f1a489b949f109255c78c8MD53trueAnonymousREADTEXTFlorezMaria_2023_Inmovilizacion_Enzimas_Degradacion.pdf.txtFlorezMaria_2023_Inmovilizacion_Enzimas_Degradacion.pdf.txtExtracted texttext/plain101528https://bibliotecadigital.udea.edu.co/bitstreams/5f928015-e3a4-4b7f-846d-7696f32517be/downloadddbbb59287f9e427ab1e4f58957bb7e7MD54falseAnonymousREADTHUMBNAILFlorezMaria_2023_Inmovilizacion_Enzimas_Degradacion.pdf.jpgFlorezMaria_2023_Inmovilizacion_Enzimas_Degradacion.pdf.jpgGenerated Thumbnailimage/jpeg8668https://bibliotecadigital.udea.edu.co/bitstreams/a734ec21-4886-4528-8a37-6d398d87d892/download594185cd49e5f357d66d1c3ecbea9d11MD55falseAnonymousREAD10495/47590oai:bibliotecadigital.udea.edu.co:10495/475902025-10-09 04:07:58.589http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
