Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness

ABSTRACT: The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point view of the theory of Differential Algebra. In particular, by Morales-Ramis theory it is possible to analyze...

Full description

Autores:
Giraldo Salazar, Hernán Alonso
Piedrahíta Escobar, Carlos Cesar
Acosta Humánez, Primitivo Belén
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44292
Acceso en línea:
https://hdl.handle.net/10495/44292
Palabra clave:
Teoría de Galois
Galois theory
Ecuaciones
Equations
Sismología
Seismology
Geofísica
Geophysics
Sistemas de Hamilton
Hamiltonian systems
Ecuación de Eikonal
Ecuación de Helmholtz
Aproximación de alta frecuencia
Teoría de Morales Ramis
Teoría de rayos
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_d162590ca52b6e258e21d720ed1f9f85
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/44292
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
title Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
spellingShingle Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
Teoría de Galois
Galois theory
Ecuaciones
Equations
Sismología
Seismology
Geofísica
Geophysics
Sistemas de Hamilton
Hamiltonian systems
Ecuación de Eikonal
Ecuación de Helmholtz
Aproximación de alta frecuencia
Teoría de Morales Ramis
Teoría de rayos
title_short Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
title_full Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
title_fullStr Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
title_full_unstemmed Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
title_sort Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of Slowness
dc.creator.fl_str_mv Giraldo Salazar, Hernán Alonso
Piedrahíta Escobar, Carlos Cesar
Acosta Humánez, Primitivo Belén
dc.contributor.author.none.fl_str_mv Giraldo Salazar, Hernán Alonso
Piedrahíta Escobar, Carlos Cesar
Acosta Humánez, Primitivo Belén
dc.contributor.researchgroup.spa.fl_str_mv Álgebra, Teoría de Números y Aplicaciones: ERM
Álgebra U de A
dc.subject.lemb.none.fl_str_mv Teoría de Galois
Galois theory
Ecuaciones
Equations
Sismología
Seismology
Geofísica
Geophysics
Sistemas de Hamilton
Hamiltonian systems
topic Teoría de Galois
Galois theory
Ecuaciones
Equations
Sismología
Seismology
Geofísica
Geophysics
Sistemas de Hamilton
Hamiltonian systems
Ecuación de Eikonal
Ecuación de Helmholtz
Aproximación de alta frecuencia
Teoría de Morales Ramis
Teoría de rayos
dc.subject.proposal.spa.fl_str_mv Ecuación de Eikonal
Ecuación de Helmholtz
Aproximación de alta frecuencia
Teoría de Morales Ramis
Teoría de rayos
description ABSTRACT: The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point view of the theory of Differential Algebra. In particular, by Morales-Ramis theory it is possible to analyze inte- grable Hamiltonian systems through the abelian structure of their variational equations. In this paper we obtain the abelian differential Galois groups and the representation of the quiver, that allow us to obtain such abelian differential Galois groups, for some seismic models with constant Hessian of square of slowness, proposed in [20], which are equivalent to linear Hamiltonian systems with three uncoupled harmonic oscillators.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2025-01-21T20:01:08Z
dc.date.available.none.fl_str_mv 2025-01-21T20:01:08Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0972-0871
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/44292
dc.identifier.eissn.none.fl_str_mv 0971-4332
identifier_str_mv 0972-0871
0971-4332
url https://hdl.handle.net/10495/44292
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 102
dc.relation.ispartofjournal.spa.fl_str_mv Far East Journal of Mathematical Sciences
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Allahabad
dc.publisher.place.spa.fl_str_mv Allahabad, India
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/52285722-023a-4986-927e-a8ac64f3fb87/download
https://bibliotecadigital.udea.edu.co/bitstreams/06d3d3f0-2a90-442f-9d6d-7a19371887d1/download
https://bibliotecadigital.udea.edu.co/bitstreams/52a1c048-e78b-40f8-ab3b-3e8b02d71994/download
https://bibliotecadigital.udea.edu.co/bitstreams/01874f3e-b220-4cde-a833-9b4b3b5eab64/download
https://bibliotecadigital.udea.edu.co/bitstreams/2f2136a1-5709-4c9e-8126-2a30fae81177/download
bitstream.checksum.fl_str_mv 7cefbb017e445a31ba394b7571d797ec
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
ed7f080a381c330a66db038ae330de80
7c47fd1cd8e98bd589cca9835a76b189
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052303875833856
spelling Giraldo Salazar, Hernán AlonsoPiedrahíta Escobar, Carlos CesarAcosta Humánez, Primitivo BelénÁlgebra, Teoría de Números y Aplicaciones: ERMÁlgebra U de A2025-01-21T20:01:08Z2025-01-21T20:01:08Z20160972-0871https://hdl.handle.net/10495/442920971-4332ABSTRACT: The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point view of the theory of Differential Algebra. In particular, by Morales-Ramis theory it is possible to analyze inte- grable Hamiltonian systems through the abelian structure of their variational equations. In this paper we obtain the abelian differential Galois groups and the representation of the quiver, that allow us to obtain such abelian differential Galois groups, for some seismic models with constant Hessian of square of slowness, proposed in [20], which are equivalent to linear Hamiltonian systems with three uncoupled harmonic oscillators.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIColombia. Ministerio de Ciencia, Tecnología e Innovación - MinCienciasCOL0017217COL008689615 páginasapplication/pdfengUniversidad de AllahabadAllahabad, Indiahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Differential Galois Groups and Representation of Quivers for Seismic Models with Constant Hessian of Square of SlownessArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionTeoría de GaloisGalois theoryEcuacionesEquationsSismologíaSeismologyGeofísicaGeophysicsSistemas de HamiltonHamiltonian systemsEcuación de EikonalEcuación de HelmholtzAproximación de alta frecuenciaTeoría de Morales RamisTeoría de rayos151102Far East Journal of Mathematical SciencesEstrategia de Sostenibilidad 2016-20170266-2013RoR:03bp5hc83RoR:03fd5ne08PublicationORIGINALGiraldoHernan_2017_Differential_Galois_Representation.pdfGiraldoHernan_2017_Differential_Galois_Representation.pdfArtículo de investigaciónapplication/pdf229797https://bibliotecadigital.udea.edu.co/bitstreams/52285722-023a-4986-927e-a8ac64f3fb87/download7cefbb017e445a31ba394b7571d797ecMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/06d3d3f0-2a90-442f-9d6d-7a19371887d1/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/52a1c048-e78b-40f8-ab3b-3e8b02d71994/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGiraldoHernan_2017_Differential_Galois_Representation.pdf.txtGiraldoHernan_2017_Differential_Galois_Representation.pdf.txtExtracted texttext/plain41444https://bibliotecadigital.udea.edu.co/bitstreams/01874f3e-b220-4cde-a833-9b4b3b5eab64/downloaded7f080a381c330a66db038ae330de80MD54falseAnonymousREADTHUMBNAILGiraldoHernan_2017_Differential_Galois_Representation.pdf.jpgGiraldoHernan_2017_Differential_Galois_Representation.pdf.jpgGenerated Thumbnailimage/jpeg9228https://bibliotecadigital.udea.edu.co/bitstreams/2f2136a1-5709-4c9e-8126-2a30fae81177/download7c47fd1cd8e98bd589cca9835a76b189MD55falseAnonymousREAD10495/44292oai:bibliotecadigital.udea.edu.co:10495/442922025-03-26 20:13:59.488https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=