Semiclassical Propagator of the Wigner Function for Open Quantum Systems

ABSTRACT: The concept of open quantum system is very broad and it is related to the ability of measuring only certain degree of freedoms of a particular system. Although this idea is relatively simple, the separation between the system of interest, the degree of freedoms that are accesible experimen...

Full description

Autores:
Flórez Acosta, Carlos Andrés
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2018
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/42805
Acceso en línea:
https://hdl.handle.net/10495/42805
Palabra clave:
Phase space (Statistical physics)
Sistemas cuánticos
Quantum systems
Sistemas abiertos (Física)
Open systems (Physics)
Distribución de Wigner
Wigner distribution
Teoría cuántica
Quantum theory
Wigner propagator
Semiclassical physics
Quantum nonlinearities
Quantum nonlocality
http://id.loc.gov/authorities/subjects/sh86000676
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh85094897
http://id.loc.gov/authorities/subjects/sh85146644
http://id.loc.gov/authorities/subjects/sh85109469
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_d0c01a4d0d59ef7619e90600e40f2632
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/42805
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Semiclassical Propagator of the Wigner Function for Open Quantum Systems
title Semiclassical Propagator of the Wigner Function for Open Quantum Systems
spellingShingle Semiclassical Propagator of the Wigner Function for Open Quantum Systems
Phase space (Statistical physics)
Sistemas cuánticos
Quantum systems
Sistemas abiertos (Física)
Open systems (Physics)
Distribución de Wigner
Wigner distribution
Teoría cuántica
Quantum theory
Wigner propagator
Semiclassical physics
Quantum nonlinearities
Quantum nonlocality
http://id.loc.gov/authorities/subjects/sh86000676
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh85094897
http://id.loc.gov/authorities/subjects/sh85146644
http://id.loc.gov/authorities/subjects/sh85109469
title_short Semiclassical Propagator of the Wigner Function for Open Quantum Systems
title_full Semiclassical Propagator of the Wigner Function for Open Quantum Systems
title_fullStr Semiclassical Propagator of the Wigner Function for Open Quantum Systems
title_full_unstemmed Semiclassical Propagator of the Wigner Function for Open Quantum Systems
title_sort Semiclassical Propagator of the Wigner Function for Open Quantum Systems
dc.creator.fl_str_mv Flórez Acosta, Carlos Andrés
dc.contributor.advisor.none.fl_str_mv Pachón Contreras, Leonardo Augusto
dc.contributor.author.none.fl_str_mv Flórez Acosta, Carlos Andrés
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física Atómica y Molecular
dc.subject.lcsh.none.fl_str_mv Phase space (Statistical physics)
Sistemas cuánticos
Quantum systems
Sistemas abiertos (Física)
Open systems (Physics)
Distribución de Wigner
Wigner distribution
Teoría cuántica
Quantum theory
topic Phase space (Statistical physics)
Sistemas cuánticos
Quantum systems
Sistemas abiertos (Física)
Open systems (Physics)
Distribución de Wigner
Wigner distribution
Teoría cuántica
Quantum theory
Wigner propagator
Semiclassical physics
Quantum nonlinearities
Quantum nonlocality
http://id.loc.gov/authorities/subjects/sh86000676
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh85094897
http://id.loc.gov/authorities/subjects/sh85146644
http://id.loc.gov/authorities/subjects/sh85109469
dc.subject.proposal.spa.fl_str_mv Wigner propagator
Semiclassical physics
Quantum nonlinearities
Quantum nonlocality
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh86000676
http://id.loc.gov/authorities/subjects/sh2013002642
http://id.loc.gov/authorities/subjects/sh85094897
http://id.loc.gov/authorities/subjects/sh85146644
http://id.loc.gov/authorities/subjects/sh85109469
description ABSTRACT: The concept of open quantum system is very broad and it is related to the ability of measuring only certain degree of freedoms of a particular system. Although this idea is relatively simple, the separation between the system of interest, the degree of freedoms that are accesible experimentally, and the reservoir, the degree of freedoms that are not accesible experimentally, is not always clear. For instance, in molecular systems, electronic spectroscopy has access only to electronic degree of freedoms so that the nuclear and vibrational degree of freedom become the reservoir, this makes its description not trivial. This scenario leads to have non-trivial and structured reservoirs and to develop powerful tools to analyze them. The hallmark of non-trivial and structured reservoirs is the non-Markovian dynamics. By translating the Feynman and Vernon influence functional approach into phase-space representation, we develop two theories of semiclassical evolution of the Wigner function of the system of interest that incorporate non-Markovian dynamics and highly non-trivial quantum effects such as non-locality of quantum mechanics: (i) We translate the Caldeira-Leggett model into phase-space representation of quantum mechanics and (ii) we consider the possibility of having non-linear baths and therefore, truly quantum reservoirs. During the last forty years the study of energy loss and coherence in quantum systems has been based on the Ullersma-Caldeira-Leggett model, a model that describes the environment of quantum systems of interest as a collection of harmonic oscillators with classical evolution. We constructed this model in the Wigner-Weyl representation of quantum mechanics and discuss the classical nature of the evolution of the bath modes and the semiclassical evolution of the central system. As an application of the semiclassical Wigner propagator, the non-Markovian time evolution under the Morse potencial is analyzed. There, it is clear how decohering processes shrink the propagator to smaller regions of phase space implying that the dynamics become more local, i.e., more classical. The current level of experimentation and control of physical systems have called into question the validity of the model in, one hand, molecular systems (e.g. photosynthetic complexes immersed in solvents, chemical systems in liquid phase or gas and manipulated with intense laser pulses) and, in the other hand, solid state systems (e.g. Josephson junctions, spins in quantum dots or "spinning ice"). Given the importance of these systems in the development of new quantum technologies and in the understanding of quantum phenomena in mesoscopic systems, it has become necessary to develop new models of the environment and efficient methodologies with quantitative prediction power. However, some of them are artificial modifications of the Ullersma-Caldeira-Leggett model without solid and clean physical support. Here we formulated a general framework that allows the study of quantum correlations in quantum systems in the presence of non-harmonic thermal baths (e.g. baths formed by strongly coupled diatomic molecules). This formulation will allow a more precise and quantitative description of processes such as the transport of excitons in photosynthetic complexes, the transfer of heat in solid state devices, among others. Results clearly show the non-classical time dynamics of the bath modes. The implementation of this particular theory remains, however, as a challenge.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2024-10-22T14:55:13Z
dc.date.available.none.fl_str_mv 2024-10-22T14:55:13Z
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/42805
url https://hdl.handle.net/10495/42805
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 118 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Exactas y Naturales. Doctorado en Física
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/b4604c63-0863-4fa1-a945-b301f742adcc/download
https://bibliotecadigital.udea.edu.co/bitstreams/60c9b0ed-224f-42d7-97e2-c47da76195c0/download
https://bibliotecadigital.udea.edu.co/bitstreams/2a42bad8-2e2a-4a56-9bd9-5b2ff57d76d2/download
https://bibliotecadigital.udea.edu.co/bitstreams/345a3267-24cd-4d42-9a3c-52b62048828a/download
bitstream.checksum.fl_str_mv 5ff383fc45c300f050b4af6ec599dea0
8a4605be74aa9ea9d79846c1fba20a33
fae2e2337ba6198fa0fd00629ef07c15
c30375db1fe58b22b0c681f21dccf602
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052474612318208
spelling Pachón Contreras, Leonardo AugustoFlórez Acosta, Carlos AndrésGrupo de Física Atómica y Molecular2024-10-22T14:55:13Z2024-10-22T14:55:13Z2018https://hdl.handle.net/10495/42805ABSTRACT: The concept of open quantum system is very broad and it is related to the ability of measuring only certain degree of freedoms of a particular system. Although this idea is relatively simple, the separation between the system of interest, the degree of freedoms that are accesible experimentally, and the reservoir, the degree of freedoms that are not accesible experimentally, is not always clear. For instance, in molecular systems, electronic spectroscopy has access only to electronic degree of freedoms so that the nuclear and vibrational degree of freedom become the reservoir, this makes its description not trivial. This scenario leads to have non-trivial and structured reservoirs and to develop powerful tools to analyze them. The hallmark of non-trivial and structured reservoirs is the non-Markovian dynamics. By translating the Feynman and Vernon influence functional approach into phase-space representation, we develop two theories of semiclassical evolution of the Wigner function of the system of interest that incorporate non-Markovian dynamics and highly non-trivial quantum effects such as non-locality of quantum mechanics: (i) We translate the Caldeira-Leggett model into phase-space representation of quantum mechanics and (ii) we consider the possibility of having non-linear baths and therefore, truly quantum reservoirs. During the last forty years the study of energy loss and coherence in quantum systems has been based on the Ullersma-Caldeira-Leggett model, a model that describes the environment of quantum systems of interest as a collection of harmonic oscillators with classical evolution. We constructed this model in the Wigner-Weyl representation of quantum mechanics and discuss the classical nature of the evolution of the bath modes and the semiclassical evolution of the central system. As an application of the semiclassical Wigner propagator, the non-Markovian time evolution under the Morse potencial is analyzed. There, it is clear how decohering processes shrink the propagator to smaller regions of phase space implying that the dynamics become more local, i.e., more classical. The current level of experimentation and control of physical systems have called into question the validity of the model in, one hand, molecular systems (e.g. photosynthetic complexes immersed in solvents, chemical systems in liquid phase or gas and manipulated with intense laser pulses) and, in the other hand, solid state systems (e.g. Josephson junctions, spins in quantum dots or "spinning ice"). Given the importance of these systems in the development of new quantum technologies and in the understanding of quantum phenomena in mesoscopic systems, it has become necessary to develop new models of the environment and efficient methodologies with quantitative prediction power. However, some of them are artificial modifications of the Ullersma-Caldeira-Leggett model without solid and clean physical support. Here we formulated a general framework that allows the study of quantum correlations in quantum systems in the presence of non-harmonic thermal baths (e.g. baths formed by strongly coupled diatomic molecules). This formulation will allow a more precise and quantitative description of processes such as the transport of excitons in photosynthetic complexes, the transfer of heat in solid state devices, among others. Results clearly show the non-classical time dynamics of the bath modes. The implementation of this particular theory remains, however, as a challenge.DoctoradoDoctor en Física118 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ciencias Exactas y Naturales. Doctorado en Físicahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://purl.org/coar/access_right/c_abf2Phase space (Statistical physics)Sistemas cuánticosQuantum systemsSistemas abiertos (Física)Open systems (Physics)Distribución de WignerWigner distributionTeoría cuánticaQuantum theoryWigner propagatorSemiclassical physicsQuantum nonlinearitiesQuantum nonlocalityhttp://id.loc.gov/authorities/subjects/sh86000676http://id.loc.gov/authorities/subjects/sh2013002642http://id.loc.gov/authorities/subjects/sh85094897http://id.loc.gov/authorities/subjects/sh85146644http://id.loc.gov/authorities/subjects/sh85109469Semiclassical Propagator of the Wigner Function for Open Quantum SystemsTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftPublicationORIGINALFlorezCarlos_2018_SemiclassicalPropagatorWigner.pdfFlorezCarlos_2018_SemiclassicalPropagatorWigner.pdfTesis doctoralapplication/pdf1173486https://bibliotecadigital.udea.edu.co/bitstreams/b4604c63-0863-4fa1-a945-b301f742adcc/download5ff383fc45c300f050b4af6ec599dea0MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/60c9b0ed-224f-42d7-97e2-c47da76195c0/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTFlorezCarlos_2018_SemiclassicalPropagatorWigner.pdf.txtFlorezCarlos_2018_SemiclassicalPropagatorWigner.pdf.txtExtracted texttext/plain105417https://bibliotecadigital.udea.edu.co/bitstreams/2a42bad8-2e2a-4a56-9bd9-5b2ff57d76d2/downloadfae2e2337ba6198fa0fd00629ef07c15MD53falseAnonymousREADTHUMBNAILFlorezCarlos_2018_SemiclassicalPropagatorWigner.pdf.jpgFlorezCarlos_2018_SemiclassicalPropagatorWigner.pdf.jpgGenerated Thumbnailimage/jpeg6657https://bibliotecadigital.udea.edu.co/bitstreams/345a3267-24cd-4d42-9a3c-52b62048828a/downloadc30375db1fe58b22b0c681f21dccf602MD54falseAnonymousREAD10495/42805oai:bibliotecadigital.udea.edu.co:10495/428052025-03-26 22:55:38.715http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=