Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes

ABSTRACT: Spinel-type Li1-xMn2O4 material is a promising positive electrode material for lithium-ion batteries. This material presents 3D diffusion channels through the structure, allowing for the rapid diffusion of lithium ions during charge/discharge processes. Given its relevant properties, such...

Full description

Autores:
Mosquera Mosquera, Nerly Liliana
Calderón Gutiérrez, Jorge Andrés
Chauque, Susana
Torresi, Roberto M.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34238
Acceso en línea:
https://hdl.handle.net/10495/34238
Palabra clave:
Lithium ion batteries
Baterías de iones de litio
Electric batteries - Electrodes
Baterías eléctricas - Electrodos
Almacenamiento de energía
Energy storage
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh85041589
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_d08ca9a3701e6ff77d9b7b65ce5502eb
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/34238
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
title Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
spellingShingle Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
Lithium ion batteries
Baterías de iones de litio
Electric batteries - Electrodes
Baterías eléctricas - Electrodos
Almacenamiento de energía
Energy storage
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh85041589
title_short Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
title_full Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
title_fullStr Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
title_full_unstemmed Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
title_sort Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes
dc.creator.fl_str_mv Mosquera Mosquera, Nerly Liliana
Calderón Gutiérrez, Jorge Andrés
Chauque, Susana
Torresi, Roberto M.
dc.contributor.author.none.fl_str_mv Mosquera Mosquera, Nerly Liliana
Calderón Gutiérrez, Jorge Andrés
Chauque, Susana
Torresi, Roberto M.
dc.contributor.researchgroup.spa.fl_str_mv Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)
dc.subject.lcsh.none.fl_str_mv Lithium ion batteries
Baterías de iones de litio
Electric batteries - Electrodes
Baterías eléctricas - Electrodos
topic Lithium ion batteries
Baterías de iones de litio
Electric batteries - Electrodes
Baterías eléctricas - Electrodos
Almacenamiento de energía
Energy storage
http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh85041589
dc.subject.lemb.none.fl_str_mv Almacenamiento de energía
Energy storage
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2011000687
http://id.loc.gov/authorities/subjects/sh85041589
description ABSTRACT: Spinel-type Li1-xMn2O4 material is a promising positive electrode material for lithium-ion batteries. This material presents 3D diffusion channels through the structure, allowing for the rapid diffusion of lithium ions during charge/discharge processes. Given its relevant properties, such as a theoretical specific capacity of 149 mA h g−1 and high working potential, we propose LixMn1.8Ti0.2O4@N-doped graphene oxide (x ≤ 1) as a superior positive electrode material for lithium-ion battery applications. In organic media, the spinel showed excellent Li storage performance due to the incorporation of a conductive carbonaceous matrix (using 1,10 phenanthroline as a graphene precursor). We obtained a specific capacity of 139 mA h g–1, which represented 81% charge retention after 70 cycles. Furthermore, taking advantage of the high working potential of this material, we studied the Li storage capacity using ionic liquids as electrolyte solvents. High rate cycling at high temperatures is essential for their practical applications in extreme environments. In this work, we performed rate capability experiments at different temperatures, obtaining the best response at 40 °C with a specific capacity of 117 mA h g–1 at an applied current density of 1 C.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-25T15:07:36Z
dc.date.available.none.fl_str_mv 2023-03-25T15:07:36Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv N. Mosquera, S. Chauque, R. M. Torresi, and J. A. Calderón, “Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes,” Electrochim. Acta, vol. 449, p. 142210, 2023, doi: https://doi.org/10.1016/j.electacta.2023.142210.
dc.identifier.issn.none.fl_str_mv 0013-4686
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/34238
dc.identifier.doi.none.fl_str_mv 10.1016/j.electacta.2023.142210
identifier_str_mv N. Mosquera, S. Chauque, R. M. Torresi, and J. A. Calderón, “Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes,” Electrochim. Acta, vol. 449, p. 142210, 2023, doi: https://doi.org/10.1016/j.electacta.2023.142210.
0013-4686
10.1016/j.electacta.2023.142210
url https://hdl.handle.net/10495/34238
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Electrochim. Acta.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 449
dc.relation.ispartofjournal.spa.fl_str_mv Electrochimica Acta
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Oxford, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/e66df5a7-3e92-449c-b69f-6c4aeda7fce2/download
https://bibliotecadigital.udea.edu.co/bitstreams/4edc1a00-b6cb-44a2-9a2d-12bc51afe075/download
https://bibliotecadigital.udea.edu.co/bitstreams/98925a87-3c4a-4e84-bb72-182d05541082/download
https://bibliotecadigital.udea.edu.co/bitstreams/18a7c599-73cb-415d-a02d-0c979c3570f8/download
https://bibliotecadigital.udea.edu.co/bitstreams/cf316c59-7e24-4b8b-9fd5-c7e788f583ba/download
bitstream.checksum.fl_str_mv 0abb4d71f886e126f7b79c8cbb0946b2
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
6b5ce0749a000901f41e0fc59c26316e
dd631e2aab97adbc5b2347eb6bded713
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052435505676288
spelling Mosquera Mosquera, Nerly LilianaCalderón Gutiérrez, Jorge AndrésChauque, SusanaTorresi, Roberto M.Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)2023-03-25T15:07:36Z2023-03-25T15:07:36Z2023N. Mosquera, S. Chauque, R. M. Torresi, and J. A. Calderón, “Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytes,” Electrochim. Acta, vol. 449, p. 142210, 2023, doi: https://doi.org/10.1016/j.electacta.2023.142210.0013-4686https://hdl.handle.net/10495/3423810.1016/j.electacta.2023.142210ABSTRACT: Spinel-type Li1-xMn2O4 material is a promising positive electrode material for lithium-ion batteries. This material presents 3D diffusion channels through the structure, allowing for the rapid diffusion of lithium ions during charge/discharge processes. Given its relevant properties, such as a theoretical specific capacity of 149 mA h g−1 and high working potential, we propose LixMn1.8Ti0.2O4@N-doped graphene oxide (x ≤ 1) as a superior positive electrode material for lithium-ion battery applications. In organic media, the spinel showed excellent Li storage performance due to the incorporation of a conductive carbonaceous matrix (using 1,10 phenanthroline as a graphene precursor). We obtained a specific capacity of 139 mA h g–1, which represented 81% charge retention after 70 cycles. Furthermore, taking advantage of the high working potential of this material, we studied the Li storage capacity using ionic liquids as electrolyte solvents. High rate cycling at high temperatures is essential for their practical applications in extreme environments. In this work, we performed rate capability experiments at different temperatures, obtaining the best response at 40 °C with a specific capacity of 117 mA h g–1 at an applied current density of 1 C.COL000792713application/pdfengElsevierOxford, Inglaterrahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lithium ion batteriesBaterías de iones de litioElectric batteries - ElectrodesBaterías eléctricas - ElectrodosAlmacenamiento de energíaEnergy storagehttp://id.loc.gov/authorities/subjects/sh2011000687http://id.loc.gov/authorities/subjects/sh85041589Energy storage enhancement of LixMn1.8Ti0.2O4@N-doped graphene oxide in organic and ionic liquid electrolytesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionElectrochim. Acta.131449Electrochimica ActaPublicationORIGINALMosqueraNerly_2023_Energy-Storage-Enhancement.pdfMosqueraNerly_2023_Energy-Storage-Enhancement.pdfArtículo de investigaciónapplication/pdf7783452https://bibliotecadigital.udea.edu.co/bitstreams/e66df5a7-3e92-449c-b69f-6c4aeda7fce2/download0abb4d71f886e126f7b79c8cbb0946b2MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/4edc1a00-b6cb-44a2-9a2d-12bc51afe075/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/98925a87-3c4a-4e84-bb72-182d05541082/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMosqueraNerly_2023_Energy-Storage-Enhancement.pdf.txtMosqueraNerly_2023_Energy-Storage-Enhancement.pdf.txtExtracted texttext/plain85939https://bibliotecadigital.udea.edu.co/bitstreams/18a7c599-73cb-415d-a02d-0c979c3570f8/download6b5ce0749a000901f41e0fc59c26316eMD54falseAnonymousREADTHUMBNAILMosqueraNerly_2023_Energy-Storage-Enhancement.pdf.jpgMosqueraNerly_2023_Energy-Storage-Enhancement.pdf.jpgGenerated Thumbnailimage/jpeg15177https://bibliotecadigital.udea.edu.co/bitstreams/cf316c59-7e24-4b8b-9fd5-c7e788f583ba/downloaddd631e2aab97adbc5b2347eb6bded713MD55falseAnonymousREAD10495/34238oai:bibliotecadigital.udea.edu.co:10495/342382025-03-26 22:18:19.795http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=