Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection

ABSTRACT: Background: Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. M...

Full description

Autores:
López Agudelo, Víctor Alonso
Baena García, Andrés
Ramírez Malule, Howard
Ochoa Cáceres, Silvia Mercedes
Barrera Robledo, Luis Fernando
Ríos Estepa, Rigoberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/12825
Acceso en línea:
http://hdl.handle.net/10495/12825
Palabra clave:
Mycobacterium tuberculosis
Análisis del plano de fase fenotípica
Modelado metabólico a escala del genoma
Reprogramación metabólica
Rights
openAccess
License
https://creativecommons.org/licenses/by/2.5/co/
id UDEA2_d05ba245f2ce27cd1de91e6cf066416b
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/12825
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
title Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
spellingShingle Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
Mycobacterium tuberculosis
Análisis del plano de fase fenotípica
Modelado metabólico a escala del genoma
Reprogramación metabólica
title_short Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
title_full Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
title_fullStr Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
title_full_unstemmed Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
title_sort Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection
dc.creator.fl_str_mv López Agudelo, Víctor Alonso
Baena García, Andrés
Ramírez Malule, Howard
Ochoa Cáceres, Silvia Mercedes
Barrera Robledo, Luis Fernando
Ríos Estepa, Rigoberto
dc.contributor.author.none.fl_str_mv López Agudelo, Víctor Alonso
Baena García, Andrés
Ramírez Malule, Howard
Ochoa Cáceres, Silvia Mercedes
Barrera Robledo, Luis Fernando
Ríos Estepa, Rigoberto
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos
Grupo de Inmunología Celular e Inmunogenética
Simulación, Diseño, Control y Optimización de Procesos (SIDCOP)
dc.subject.none.fl_str_mv Mycobacterium tuberculosis
Análisis del plano de fase fenotípica
Modelado metabólico a escala del genoma
Reprogramación metabólica
topic Mycobacterium tuberculosis
Análisis del plano de fase fenotípica
Modelado metabólico a escala del genoma
Reprogramación metabólica
description ABSTRACT: Background: Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb’s vulnerability and metabolic adaptation have been carried out. Results: A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports. Conclusions: This study demonstrates the potential application of genome-scale modeling, flux balance analysis (FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb metabolic reprogramming in the context of human granulomas.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-01-04T22:19:27Z
dc.date.available.none.fl_str_mv 2020-01-04T22:19:27Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv López Agudelo, V. A., Baena García, A., Ramírez Malule, H., Ochoa Cáceres, S. M., Barrera Robledo, L. F., & Ríos Estepa, R. (2017). Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Systems. Biology, 11(107), 1-18. https://doi.org/10.1186/s12918-017-0496-z
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/12825
dc.identifier.doi.none.fl_str_mv 10.1186/s12918-017-0496-z
dc.identifier.eissn.none.fl_str_mv 1752-0509
identifier_str_mv López Agudelo, V. A., Baena García, A., Ramírez Malule, H., Ochoa Cáceres, S. M., Barrera Robledo, L. F., & Ríos Estepa, R. (2017). Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Systems. Biology, 11(107), 1-18. https://doi.org/10.1186/s12918-017-0496-z
10.1186/s12918-017-0496-z
1752-0509
url http://hdl.handle.net/10495/12825
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv BMC Syst. Biol.
dc.relation.citationendpage.spa.fl_str_mv 18
dc.relation.citationissue.spa.fl_str_mv 107
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv BMC Systems Biology
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.*.fl_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
Atribución 2.5 Colombia (CC BY 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 17
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv BMC
dc.publisher.place.spa.fl_str_mv Londres, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/1da858fd-c21f-4e23-8334-b9fffbf50d86/download
https://bibliotecadigital.udea.edu.co/bitstreams/554254b3-b941-4688-af6c-228c495fd05e/download
https://bibliotecadigital.udea.edu.co/bitstreams/7f26ec84-c29d-4477-99a4-bb65cf4c35a5/download
https://bibliotecadigital.udea.edu.co/bitstreams/56150f9f-16a6-42c5-8735-f493cf6ec0e9/download
https://bibliotecadigital.udea.edu.co/bitstreams/63dceefa-39e0-43bc-85b9-d7678c3ca9bb/download
https://bibliotecadigital.udea.edu.co/bitstreams/9eab8331-ce14-4cd4-bcf8-9b17ff7b9220/download
https://bibliotecadigital.udea.edu.co/bitstreams/54e9d0f2-79fd-4b65-968d-c6e4bb3eb35f/download
bitstream.checksum.fl_str_mv 4b86690803600340bcc0ba431b577bb1
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
af118aa2cec55021584be9bd45a9d8ef
14bf43150898a1c831501053b03cac02
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052244958445568
spelling López Agudelo, Víctor AlonsoBaena García, AndrésRamírez Malule, HowardOchoa Cáceres, Silvia MercedesBarrera Robledo, Luis FernandoRíos Estepa, RigobertoBioprocesosGrupo de Inmunología Celular e InmunogenéticaSimulación, Diseño, Control y Optimización de Procesos (SIDCOP)2020-01-04T22:19:27Z2020-01-04T22:19:27Z2017López Agudelo, V. A., Baena García, A., Ramírez Malule, H., Ochoa Cáceres, S. M., Barrera Robledo, L. F., & Ríos Estepa, R. (2017). Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. BMC Systems. Biology, 11(107), 1-18. https://doi.org/10.1186/s12918-017-0496-zhttp://hdl.handle.net/10495/1282510.1186/s12918-017-0496-z1752-0509ABSTRACT: Background: Up to date, Mycobacterium tuberculosis (Mtb) remains as the worst intracellular killer pathogen. To establish infection, inside the granuloma, Mtb reprograms its metabolism to support both growth and survival, keeping a balance between catabolism, anabolism and energy supply. Mtb knockouts with the faculty of being essential on a wide range of nutritional conditions are deemed as target candidates for tuberculosis (TB) treatment. Constraint-based genome-scale modeling is considered as a promising tool for evaluating genetic and nutritional perturbations on Mtb metabolic reprogramming. Nonetheless, few in silico assessments of the effect of nutritional conditions on Mtb’s vulnerability and metabolic adaptation have been carried out. Results: A genome-scale model (GEM) of Mtb, modified from the H37Rv iOSDD890, was used to explore the metabolic reprogramming of two Mtb knockout mutants (pfkA- and icl-mutants), lacking key enzymes of central carbon metabolism, while exposed to changing nutritional conditions (oxygen, and carbon and nitrogen sources). A combination of shadow pricing, sensitivity analysis, and flux distributions patterns allowed us to identify metabolic behaviors that are in agreement with phenotypes reported in the literature. During hypoxia, at high glucose consumption, the Mtb pfkA-mutant showed a detrimental growth effect derived from the accumulation of toxic sugar phosphate intermediates (glucose-6-phosphate and fructose-6-phosphate) along with an increment of carbon fluxes towards the reductive direction of the tricarboxylic acid cycle (TCA). Furthermore, metabolic reprogramming of the icl-mutant (icl1&icl2) showed the importance of the methylmalonyl pathway for the detoxification of propionyl-CoA, during growth at high fatty acid consumption rates and aerobic conditions. At elevated levels of fatty acid uptake and hypoxia, we found a drop in TCA cycle intermediate accumulation that might create redox imbalance. Finally, findings regarding Mtb-mutant metabolic adaptation associated with asparagine consumption and acetate, succinate and alanine production, were in agreement with literature reports. Conclusions: This study demonstrates the potential application of genome-scale modeling, flux balance analysis (FBA), phenotypic phase plane (PhPP) analysis and shadow pricing to generate valuable insights about Mtb metabolic reprogramming in the context of human granulomas.COL0008639COL0023715COL005657417application/pdfengBMCLondres, Inglaterrahttps://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mycobacterium tuberculosisAnálisis del plano de fase fenotípicaModelado metabólico a escala del genomaReprogramación metabólicaMetabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infectionArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionBMC Syst. Biol.18107111BMC Systems BiologyPublicationORIGINALLopezVictor_2017_Metabolicadaptationtwo.pdfLopezVictor_2017_Metabolicadaptationtwo.pdfArtículo de investigaciónapplication/pdf3319526https://bibliotecadigital.udea.edu.co/bitstreams/1da858fd-c21f-4e23-8334-b9fffbf50d86/download4b86690803600340bcc0ba431b577bb1MD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/554254b3-b941-4688-af6c-228c495fd05e/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/7f26ec84-c29d-4477-99a4-bb65cf4c35a5/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/56150f9f-16a6-42c5-8735-f493cf6ec0e9/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/63dceefa-39e0-43bc-85b9-d7678c3ca9bb/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTLopezVictor_2017_Metabolicadaptationtwo.pdf.txtLopezVictor_2017_Metabolicadaptationtwo.pdf.txtExtracted texttext/plain90222https://bibliotecadigital.udea.edu.co/bitstreams/9eab8331-ce14-4cd4-bcf8-9b17ff7b9220/downloadaf118aa2cec55021584be9bd45a9d8efMD56falseAnonymousREADTHUMBNAILLopezVictor_2017_Metabolicadaptationtwo.pdf.jpgLopezVictor_2017_Metabolicadaptationtwo.pdf.jpgGenerated Thumbnailimage/jpeg12783https://bibliotecadigital.udea.edu.co/bitstreams/54e9d0f2-79fd-4b65-968d-c6e4bb3eb35f/download14bf43150898a1c831501053b03cac02MD57falseAnonymousREAD10495/12825oai:bibliotecadigital.udea.edu.co:10495/128252025-03-26 19:16:17.425https://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=