An identity involving invariant polynomials of matrix arguments

ABSTRACT:The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix arguments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric function when the argument matrix is identity. Applications of t...

Full description

Autores:
Nagar, Daya Krishna
Gupta, Arjun Kumar
Tipo de recurso:
Article of investigation
Fecha de publicación:
2005
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/32714
Acceso en línea:
https://hdl.handle.net/10495/32714
Palabra clave:
Funciones de Coulomb
Coulomb functions
Funciones hipergeométricas
Hypergeometric functions
Polinomios
Polynomials
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_c50d72f7b31231f60d401f5fb619b108
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/32714
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv An identity involving invariant polynomials of matrix arguments
title An identity involving invariant polynomials of matrix arguments
spellingShingle An identity involving invariant polynomials of matrix arguments
Funciones de Coulomb
Coulomb functions
Funciones hipergeométricas
Hypergeometric functions
Polinomios
Polynomials
title_short An identity involving invariant polynomials of matrix arguments
title_full An identity involving invariant polynomials of matrix arguments
title_fullStr An identity involving invariant polynomials of matrix arguments
title_full_unstemmed An identity involving invariant polynomials of matrix arguments
title_sort An identity involving invariant polynomials of matrix arguments
dc.creator.fl_str_mv Nagar, Daya Krishna
Gupta, Arjun Kumar
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Gupta, Arjun Kumar
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Funciones de Coulomb
Coulomb functions
Funciones hipergeométricas
Hypergeometric functions
Polinomios
Polynomials
topic Funciones de Coulomb
Coulomb functions
Funciones hipergeométricas
Hypergeometric functions
Polinomios
Polynomials
description ABSTRACT:The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix arguments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric function when the argument matrix is identity. Applications of the identity derived in this article are also given.
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.accessioned.none.fl_str_mv 2022-12-11T17:15:56Z
dc.date.available.none.fl_str_mv 2022-12-11T17:15:56Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0893-9659
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/32714
dc.identifier.doi.none.fl_str_mv 10.1016/j.aml.2004.08.004
identifier_str_mv 0893-9659
10.1016/j.aml.2004.08.004
url https://hdl.handle.net/10495/32714
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Appl. Math. Lett.
dc.relation.citationendpage.spa.fl_str_mv 243
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 239
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Applied Mathematics Letters
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 5
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/26dcdd48-24e6-4ed3-a7ab-3a408f0ec848/download
https://bibliotecadigital.udea.edu.co/bitstreams/77edb0ec-677c-480b-afc3-6bcdc993eade/download
https://bibliotecadigital.udea.edu.co/bitstreams/ff2fdbb5-8317-481d-9cdc-6e3c1a2297b0/download
https://bibliotecadigital.udea.edu.co/bitstreams/6a39580f-27e9-4d0e-ac70-edbdf540a801/download
https://bibliotecadigital.udea.edu.co/bitstreams/1f488dec-71b7-48bb-b93c-1c38204d6bee/download
bitstream.checksum.fl_str_mv ea501cd7f54d222ab3f5af20ac86ba40
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
712e3cc496079f0ecb488995f6df291b
2343f972687cb21d2838d0bf8507d4ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052574836260864
spelling Nagar, Daya KrishnaGupta, Arjun KumarAnálisis Multivariado2022-12-11T17:15:56Z2022-12-11T17:15:56Z20050893-9659https://hdl.handle.net/10495/3271410.1016/j.aml.2004.08.004ABSTRACT:The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix arguments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric function when the argument matrix is identity. Applications of the identity derived in this article are also given.COL00005325application/pdfengElsevierNueva York, Estados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2An identity involving invariant polynomials of matrix argumentsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones de CoulombCoulomb functionsFunciones hipergeométricasHypergeometric functionsPolinomiosPolynomialsAppl. Math. Lett.243223918Applied Mathematics LettersPublicationORIGINALNagarDaya_2005_AnIdentityInvolving.pdfNagarDaya_2005_AnIdentityInvolving.pdfArtículo de investigaciónapplication/pdf125741https://bibliotecadigital.udea.edu.co/bitstreams/26dcdd48-24e6-4ed3-a7ab-3a408f0ec848/downloadea501cd7f54d222ab3f5af20ac86ba40MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/77edb0ec-677c-480b-afc3-6bcdc993eade/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ff2fdbb5-8317-481d-9cdc-6e3c1a2297b0/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2005_AnIdentityInvolving.pdf.txtNagarDaya_2005_AnIdentityInvolving.pdf.txtExtracted texttext/plain10096https://bibliotecadigital.udea.edu.co/bitstreams/6a39580f-27e9-4d0e-ac70-edbdf540a801/download712e3cc496079f0ecb488995f6df291bMD54falseAnonymousREADTHUMBNAILNagarDaya_2005_AnIdentityInvolving.pdf.jpgNagarDaya_2005_AnIdentityInvolving.pdf.jpgGenerated Thumbnailimage/jpeg12598https://bibliotecadigital.udea.edu.co/bitstreams/1f488dec-71b7-48bb-b93c-1c38204d6bee/download2343f972687cb21d2838d0bf8507d4eaMD55falseAnonymousREAD10495/32714oai:bibliotecadigital.udea.edu.co:10495/327142025-03-27 00:31:36.239https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=