An identity involving invariant polynomials of matrix arguments
ABSTRACT:The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix arguments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric function when the argument matrix is identity. Applications of t...
- Autores:
-
Nagar, Daya Krishna
Gupta, Arjun Kumar
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2005
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/32714
- Acceso en línea:
- https://hdl.handle.net/10495/32714
- Palabra clave:
- Funciones de Coulomb
Coulomb functions
Funciones hipergeométricas
Hypergeometric functions
Polinomios
Polynomials
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_c50d72f7b31231f60d401f5fb619b108 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/32714 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
An identity involving invariant polynomials of matrix arguments |
| title |
An identity involving invariant polynomials of matrix arguments |
| spellingShingle |
An identity involving invariant polynomials of matrix arguments Funciones de Coulomb Coulomb functions Funciones hipergeométricas Hypergeometric functions Polinomios Polynomials |
| title_short |
An identity involving invariant polynomials of matrix arguments |
| title_full |
An identity involving invariant polynomials of matrix arguments |
| title_fullStr |
An identity involving invariant polynomials of matrix arguments |
| title_full_unstemmed |
An identity involving invariant polynomials of matrix arguments |
| title_sort |
An identity involving invariant polynomials of matrix arguments |
| dc.creator.fl_str_mv |
Nagar, Daya Krishna Gupta, Arjun Kumar |
| dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Gupta, Arjun Kumar |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado |
| dc.subject.lemb.none.fl_str_mv |
Funciones de Coulomb Coulomb functions Funciones hipergeométricas Hypergeometric functions Polinomios Polynomials |
| topic |
Funciones de Coulomb Coulomb functions Funciones hipergeométricas Hypergeometric functions Polinomios Polynomials |
| description |
ABSTRACT:The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix arguments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric function when the argument matrix is identity. Applications of the identity derived in this article are also given. |
| publishDate |
2005 |
| dc.date.issued.none.fl_str_mv |
2005 |
| dc.date.accessioned.none.fl_str_mv |
2022-12-11T17:15:56Z |
| dc.date.available.none.fl_str_mv |
2022-12-11T17:15:56Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0893-9659 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/32714 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.aml.2004.08.004 |
| identifier_str_mv |
0893-9659 10.1016/j.aml.2004.08.004 |
| url |
https://hdl.handle.net/10495/32714 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Appl. Math. Lett. |
| dc.relation.citationendpage.spa.fl_str_mv |
243 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
239 |
| dc.relation.citationvolume.spa.fl_str_mv |
18 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Applied Mathematics Letters |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
5 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/26dcdd48-24e6-4ed3-a7ab-3a408f0ec848/download https://bibliotecadigital.udea.edu.co/bitstreams/77edb0ec-677c-480b-afc3-6bcdc993eade/download https://bibliotecadigital.udea.edu.co/bitstreams/ff2fdbb5-8317-481d-9cdc-6e3c1a2297b0/download https://bibliotecadigital.udea.edu.co/bitstreams/6a39580f-27e9-4d0e-ac70-edbdf540a801/download https://bibliotecadigital.udea.edu.co/bitstreams/1f488dec-71b7-48bb-b93c-1c38204d6bee/download |
| bitstream.checksum.fl_str_mv |
ea501cd7f54d222ab3f5af20ac86ba40 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 712e3cc496079f0ecb488995f6df291b 2343f972687cb21d2838d0bf8507d4ea |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052574836260864 |
| spelling |
Nagar, Daya KrishnaGupta, Arjun KumarAnálisis Multivariado2022-12-11T17:15:56Z2022-12-11T17:15:56Z20050893-9659https://hdl.handle.net/10495/3271410.1016/j.aml.2004.08.004ABSTRACT:The purpose of the present paper is to establish an identity involving invariant polynomials of two matrix arguments. This identity is a generalization of a well known identity that gives evaluation of the Gauss hypergeometric function when the argument matrix is identity. Applications of the identity derived in this article are also given.COL00005325application/pdfengElsevierNueva York, Estados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2An identity involving invariant polynomials of matrix argumentsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones de CoulombCoulomb functionsFunciones hipergeométricasHypergeometric functionsPolinomiosPolynomialsAppl. Math. Lett.243223918Applied Mathematics LettersPublicationORIGINALNagarDaya_2005_AnIdentityInvolving.pdfNagarDaya_2005_AnIdentityInvolving.pdfArtículo de investigaciónapplication/pdf125741https://bibliotecadigital.udea.edu.co/bitstreams/26dcdd48-24e6-4ed3-a7ab-3a408f0ec848/downloadea501cd7f54d222ab3f5af20ac86ba40MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/77edb0ec-677c-480b-afc3-6bcdc993eade/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ff2fdbb5-8317-481d-9cdc-6e3c1a2297b0/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2005_AnIdentityInvolving.pdf.txtNagarDaya_2005_AnIdentityInvolving.pdf.txtExtracted texttext/plain10096https://bibliotecadigital.udea.edu.co/bitstreams/6a39580f-27e9-4d0e-ac70-edbdf540a801/download712e3cc496079f0ecb488995f6df291bMD54falseAnonymousREADTHUMBNAILNagarDaya_2005_AnIdentityInvolving.pdf.jpgNagarDaya_2005_AnIdentityInvolving.pdf.jpgGenerated Thumbnailimage/jpeg12598https://bibliotecadigital.udea.edu.co/bitstreams/1f488dec-71b7-48bb-b93c-1c38204d6bee/download2343f972687cb21d2838d0bf8507d4eaMD55falseAnonymousREAD10495/32714oai:bibliotecadigital.udea.edu.co:10495/327142025-03-27 00:31:36.239https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
