Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not suf ficient for 3-dimensional non unimodular Lie groups. As a consequence...

Full description

Autores:
Medina Perea, Alirio Alberto
Bromberg, Shirley
Tipo de recurso:
Article of investigation
Fecha de publicación:
2008
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45969
Acceso en línea:
https://hdl.handle.net/10495/45969
Palabra clave:
Lagrange equations
Lorentzian metrics
Complete geodesics
3-dimensional Lie groups
http://id.loc.gov/authorities/subjects/sh85073964
Rights
openAccess
License
http://creativecommons.org/licenses/by-sa/4.0/
Description
Summary:In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not suf ficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with non compact (local) isotropy group, those that are geodesically complete.