Product and quotient of independent gauss hypergeometric variables
ABSTRACT: In this article, we have derived the probability density functions of the product and the quotient of two independent random variables having Gauss hypergeometric distribution. These densities have been expressed in terms of Appell’s first hypergeometric function F1. Further, R´enyi and Sh...
- Autores:
-
Nagar, Daya Krishna
Bedoya Valencia, Danilo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2011
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/41786
- Acceso en línea:
- https://hdl.handle.net/10495/41786
- Palabra clave:
- Funciones beta
Functions, beta
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Hiperfunciones
Hyperfunctions
Distribución de Gauss
Gauss distribution
Funciones hipergeométricas
Hypergeometric functions
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_c36fea20a9ef3ac5e2b1a60643cbd38b |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/41786 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Product and quotient of independent gauss hypergeometric variables |
| dc.title.translated.spa.fl_str_mv |
Producto y cociente de variables independientes hipergeométrica de Gauss |
| title |
Product and quotient of independent gauss hypergeometric variables |
| spellingShingle |
Product and quotient of independent gauss hypergeometric variables Funciones beta Functions, beta Teoría de las distribuciones (análisis funcional) Theory of distributions (Functional analysis) Hiperfunciones Hyperfunctions Distribución de Gauss Gauss distribution Funciones hipergeométricas Hypergeometric functions |
| title_short |
Product and quotient of independent gauss hypergeometric variables |
| title_full |
Product and quotient of independent gauss hypergeometric variables |
| title_fullStr |
Product and quotient of independent gauss hypergeometric variables |
| title_full_unstemmed |
Product and quotient of independent gauss hypergeometric variables |
| title_sort |
Product and quotient of independent gauss hypergeometric variables |
| dc.creator.fl_str_mv |
Nagar, Daya Krishna Bedoya Valencia, Danilo |
| dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Bedoya Valencia, Danilo |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado |
| dc.subject.lemb.none.fl_str_mv |
Funciones beta Functions, beta Teoría de las distribuciones (análisis funcional) Theory of distributions (Functional analysis) Hiperfunciones Hyperfunctions Distribución de Gauss Gauss distribution Funciones hipergeométricas Hypergeometric functions |
| topic |
Funciones beta Functions, beta Teoría de las distribuciones (análisis funcional) Theory of distributions (Functional analysis) Hiperfunciones Hyperfunctions Distribución de Gauss Gauss distribution Funciones hipergeométricas Hypergeometric functions |
| description |
ABSTRACT: In this article, we have derived the probability density functions of the product and the quotient of two independent random variables having Gauss hypergeometric distribution. These densities have been expressed in terms of Appell’s first hypergeometric function F1. Further, R´enyi and Shannon entropies have also been derived for the Gauss hypergeometric distribution. |
| publishDate |
2011 |
| dc.date.issued.none.fl_str_mv |
2011 |
| dc.date.accessioned.none.fl_str_mv |
2024-09-04T20:31:06Z |
| dc.date.available.none.fl_str_mv |
2024-09-04T20:31:06Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Nagar, D. K., & Bedoya Valencia, D. (2011). Product and Quotient of Independent Gauss Hypergeometric Variables. Ingeniería Y Ciencia, 7(14), 29–48. Retrieved from https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/427 |
| dc.identifier.issn.none.fl_str_mv |
1794-9165 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/41786 |
| dc.identifier.eissn.none.fl_str_mv |
2256-4314 |
| identifier_str_mv |
Nagar, D. K., & Bedoya Valencia, D. (2011). Product and Quotient of Independent Gauss Hypergeometric Variables. Ingeniería Y Ciencia, 7(14), 29–48. Retrieved from https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/427 1794-9165 2256-4314 |
| url |
https://hdl.handle.net/10495/41786 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Ing. Cienc. |
| dc.relation.citationendpage.spa.fl_str_mv |
48 |
| dc.relation.citationissue.spa.fl_str_mv |
14 |
| dc.relation.citationstartpage.spa.fl_str_mv |
29 |
| dc.relation.citationvolume.spa.fl_str_mv |
7 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ingeniería y Ciencia |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
20 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad EAFIT, Escuela de Ciencias Aplicadas e Ingeniería |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/0512ee54-3553-490c-8708-be8be087566e/download https://bibliotecadigital.udea.edu.co/bitstreams/d8e05e44-a4a0-4427-a7f7-28bdac27309e/download https://bibliotecadigital.udea.edu.co/bitstreams/407c3e4d-f200-49e8-bb46-562b9082d12b/download https://bibliotecadigital.udea.edu.co/bitstreams/3eeb1430-7bf7-4322-a3cd-7f34a82939f9/download https://bibliotecadigital.udea.edu.co/bitstreams/0c89c899-d24b-439f-a3ae-9ca9de9f3e17/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 08c83d9639a759affcf8411a4da3f023 d597483ba55add97d46f28a8c5fdbed8 db9406c97e86013a2a6a10e3ef3355a0 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052500342276096 |
| spelling |
Nagar, Daya KrishnaBedoya Valencia, DaniloAnálisis Multivariado2024-09-04T20:31:06Z2024-09-04T20:31:06Z2011Nagar, D. K., & Bedoya Valencia, D. (2011). Product and Quotient of Independent Gauss Hypergeometric Variables. Ingeniería Y Ciencia, 7(14), 29–48. Retrieved from https://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/4271794-9165https://hdl.handle.net/10495/417862256-4314ABSTRACT: In this article, we have derived the probability density functions of the product and the quotient of two independent random variables having Gauss hypergeometric distribution. These densities have been expressed in terms of Appell’s first hypergeometric function F1. Further, R´enyi and Shannon entropies have also been derived for the Gauss hypergeometric distribution.RESUMEN: En este artículo, hemos derivado las funciones de densidad de probabilidad del producto y el cociente de dos variables aleatorias independientes que tienen una distribución hipergeométrica de Gauss. Estas densidades se hayan expresadas en términos de la primera función hipergeométrica de Appell F1. Además, entropias Rényi y Shannon también se han derivado de la distribución hipergeométrica de Gauss.COL000053220 páginasapplication/pdfengUniversidad EAFIT, Escuela de Ciencias Aplicadas e IngenieríaMedellín, Colombiahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Product and quotient of independent gauss hypergeometric variablesProducto y cociente de variables independientes hipergeométrica de GaussArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones betaFunctions, betaTeoría de las distribuciones (análisis funcional)Theory of distributions (Functional analysis)HiperfuncionesHyperfunctionsDistribución de GaussGauss distributionFunciones hipergeométricasHypergeometric functionsIng. Cienc.4814297Ingeniería y CienciaPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/0512ee54-3553-490c-8708-be8be087566e/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/d8e05e44-a4a0-4427-a7f7-28bdac27309e/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALNagarDaya_2011_Product-Quotient-Independent-Gauss.pdfNagarDaya_2011_Product-Quotient-Independent-Gauss.pdfArtículo de investigaciónapplication/pdf453047https://bibliotecadigital.udea.edu.co/bitstreams/407c3e4d-f200-49e8-bb46-562b9082d12b/download08c83d9639a759affcf8411a4da3f023MD54trueAnonymousREADTEXTNagarDaya_2011_Product-Quotient-Independent-Gauss.pdf.txtNagarDaya_2011_Product-Quotient-Independent-Gauss.pdf.txtExtracted texttext/plain36961https://bibliotecadigital.udea.edu.co/bitstreams/3eeb1430-7bf7-4322-a3cd-7f34a82939f9/downloadd597483ba55add97d46f28a8c5fdbed8MD55falseAnonymousREADTHUMBNAILNagarDaya_2011_Product-Quotient-Independent-Gauss.pdf.jpgNagarDaya_2011_Product-Quotient-Independent-Gauss.pdf.jpgGenerated Thumbnailimage/jpeg10916https://bibliotecadigital.udea.edu.co/bitstreams/0c89c899-d24b-439f-a3ae-9ca9de9f3e17/downloaddb9406c97e86013a2a6a10e3ef3355a0MD56falseAnonymousREAD10495/41786oai:bibliotecadigital.udea.edu.co:10495/417862025-03-26 23:23:18.909http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
