Product and quotient of independent gauss hypergeometric variables
ABSTRACT: In this article, we have derived the probability density functions of the product and the quotient of two independent random variables having Gauss hypergeometric distribution. These densities have been expressed in terms of Appell’s first hypergeometric function F1. Further, R´enyi and Sh...
- Autores:
-
Nagar, Daya Krishna
Bedoya Valencia, Danilo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2011
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/41786
- Acceso en línea:
- https://hdl.handle.net/10495/41786
- Palabra clave:
- Funciones beta
Functions, beta
Teoría de las distribuciones (análisis funcional)
Theory of distributions (Functional analysis)
Hiperfunciones
Hyperfunctions
Distribución de Gauss
Gauss distribution
Funciones hipergeométricas
Hypergeometric functions
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| Summary: | ABSTRACT: In this article, we have derived the probability density functions of the product and the quotient of two independent random variables having Gauss hypergeometric distribution. These densities have been expressed in terms of Appell’s first hypergeometric function F1. Further, R´enyi and Shannon entropies have also been derived for the Gauss hypergeometric distribution. |
|---|
