Extremal values of VDB topological indices over catacondensed polyomino systems
ABSTRACT: A VDB topological index is defined as T = T (G) = X 1≤i≤j≤n−1 mijϕi,j , where G is a graph with n vertices and mij is the number of ij-edges. We study T over the set of catacondensed polyomino systems. Specifically, we introduce two unbranching operations and show that under certain condit...
- Autores:
-
Cruz Rodes, Roberto
Rada Rincón, Juan Pablo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26798
- Acceso en línea:
- http://hdl.handle.net/10495/26798
- Palabra clave:
- Extreme values
Valores extremos
VDB indices
Catacondensed polyomino systems
Polyomino chains
http://aims.fao.org/aos/agrovoc/c_8e611af8
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_bdd57f5a0e0c1e534840aaa2dfc6d9e1 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/26798 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| title |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| spellingShingle |
Extremal values of VDB topological indices over catacondensed polyomino systems Extreme values Valores extremos VDB indices Catacondensed polyomino systems Polyomino chains http://aims.fao.org/aos/agrovoc/c_8e611af8 |
| title_short |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| title_full |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| title_fullStr |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| title_full_unstemmed |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| title_sort |
Extremal values of VDB topological indices over catacondensed polyomino systems |
| dc.creator.fl_str_mv |
Cruz Rodes, Roberto Rada Rincón, Juan Pablo |
| dc.contributor.author.none.fl_str_mv |
Cruz Rodes, Roberto Rada Rincón, Juan Pablo |
| dc.contributor.researchgroup.spa.fl_str_mv |
Álgebra U de A |
| dc.subject.agrovoc.none.fl_str_mv |
Extreme values Valores extremos |
| topic |
Extreme values Valores extremos VDB indices Catacondensed polyomino systems Polyomino chains http://aims.fao.org/aos/agrovoc/c_8e611af8 |
| dc.subject.proposal.spa.fl_str_mv |
VDB indices Catacondensed polyomino systems Polyomino chains |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_8e611af8 |
| description |
ABSTRACT: A VDB topological index is defined as T = T (G) = X 1≤i≤j≤n−1 mijϕi,j , where G is a graph with n vertices and mij is the number of ij-edges. We study T over the set of catacondensed polyomino systems. Specifically, we introduce two unbranching operations and show that under certain conditions on {ϕij}, T is monotone with respect to these operations. We apply these results to find extremal values of T over the set of catacondensed polyomino systems. |
| publishDate |
2016 |
| dc.date.issued.none.fl_str_mv |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2022-03-22T21:46:23Z |
| dc.date.available.none.fl_str_mv |
2022-03-22T21:46:23Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Cruz, R., & Rada, J. (2016). Extremal values of VDB topological indices over catacondensed polyomino systems. Appl. Math. Sci, 10, 487-501. http://dx.doi.org/10.12988/ams.2016.59613 |
| dc.identifier.issn.none.fl_str_mv |
1312-885X |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/26798 |
| dc.identifier.doi.none.fl_str_mv |
10.12988/ams.2016.59613 |
| dc.identifier.eissn.none.fl_str_mv |
1314-7552 |
| identifier_str_mv |
Cruz, R., & Rada, J. (2016). Extremal values of VDB topological indices over catacondensed polyomino systems. Appl. Math. Sci, 10, 487-501. http://dx.doi.org/10.12988/ams.2016.59613 1312-885X 10.12988/ams.2016.59613 1314-7552 |
| url |
http://hdl.handle.net/10495/26798 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Appl. Math. Sci. |
| dc.relation.citationendpage.spa.fl_str_mv |
501 |
| dc.relation.citationissue.spa.fl_str_mv |
10 |
| dc.relation.citationstartpage.spa.fl_str_mv |
487 |
| dc.relation.citationvolume.spa.fl_str_mv |
10 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Applied Mathematical Sciences |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
15 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Hikari |
| dc.publisher.place.spa.fl_str_mv |
Bulgaria |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/7d2e6e71-9268-44c2-89d6-81ea34d02e49/download https://bibliotecadigital.udea.edu.co/bitstreams/27b3fc01-4ed2-42bc-8841-f55d48e11ef7/download https://bibliotecadigital.udea.edu.co/bitstreams/50d1f08a-c827-4e92-aca1-f1c139b4c955/download https://bibliotecadigital.udea.edu.co/bitstreams/f5faf3b6-df03-4083-908b-4d236764c5a4/download https://bibliotecadigital.udea.edu.co/bitstreams/38814da5-6cce-43de-aa79-9f885769739a/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 440922d3043142e7050dc9087f3d0b8c 9c513395de4b5fd08c558a393de8bc85 e47c4916e9829c0b424209bf4bbdfabe |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052213777989632 |
| spelling |
Cruz Rodes, RobertoRada Rincón, Juan PabloÁlgebra U de A2022-03-22T21:46:23Z2022-03-22T21:46:23Z2016Cruz, R., & Rada, J. (2016). Extremal values of VDB topological indices over catacondensed polyomino systems. Appl. Math. Sci, 10, 487-501. http://dx.doi.org/10.12988/ams.2016.596131312-885Xhttp://hdl.handle.net/10495/2679810.12988/ams.2016.596131314-7552ABSTRACT: A VDB topological index is defined as T = T (G) = X 1≤i≤j≤n−1 mijϕi,j , where G is a graph with n vertices and mij is the number of ij-edges. We study T over the set of catacondensed polyomino systems. Specifically, we introduce two unbranching operations and show that under certain conditions on {ϕij}, T is monotone with respect to these operations. We apply these results to find extremal values of T over the set of catacondensed polyomino systems.COL008689615application/pdfengHikariBulgariahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Extremal values of VDB topological indices over catacondensed polyomino systemsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionExtreme valuesValores extremosVDB indicesCatacondensed polyomino systemsPolyomino chainshttp://aims.fao.org/aos/agrovoc/c_8e611af8Appl. Math. Sci.5011048710Applied Mathematical SciencesPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/7d2e6e71-9268-44c2-89d6-81ea34d02e49/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/27b3fc01-4ed2-42bc-8841-f55d48e11ef7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALCruzRoberto_2016_VDBTopologicalPolyomino.pdfCruzRoberto_2016_VDBTopologicalPolyomino.pdfArtículo de investigaciónapplication/pdf257990https://bibliotecadigital.udea.edu.co/bitstreams/50d1f08a-c827-4e92-aca1-f1c139b4c955/download440922d3043142e7050dc9087f3d0b8cMD51trueAnonymousREADTEXTCruzRoberto_2016_VDBTopologicalPolyomino.pdf.txtCruzRoberto_2016_VDBTopologicalPolyomino.pdf.txtExtracted texttext/plain25516https://bibliotecadigital.udea.edu.co/bitstreams/f5faf3b6-df03-4083-908b-4d236764c5a4/download9c513395de4b5fd08c558a393de8bc85MD54falseAnonymousREADTHUMBNAILCruzRoberto_2016_VDBTopologicalPolyomino.pdf.jpgCruzRoberto_2016_VDBTopologicalPolyomino.pdf.jpgGenerated Thumbnailimage/jpeg10575https://bibliotecadigital.udea.edu.co/bitstreams/38814da5-6cce-43de-aa79-9f885769739a/downloade47c4916e9829c0b424209bf4bbdfabeMD55falseAnonymousREAD10495/26798oai:bibliotecadigital.udea.edu.co:10495/267982025-03-26 18:42:44.182http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
