A Class of Integral Identities with Hermitian Matrix Argument

ABSTRACT: The gamma, beta and Dirichlet functions have been generalized in several ways by Ingham, Siegel, Bellman and Olkin. These authors defined them as integrals having the integrand as a scalar function of real symmetric matrix. In this article, we have defined and studied these functions when...

Full description

Autores:
Nagar, Daya Krishna
Gupta, Arjun Kumar
Sánchez Herrera, Luz Estela
Tipo de recurso:
Article of investigation
Fecha de publicación:
2006
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/33794
Acceso en línea:
https://hdl.handle.net/10495/33794
Palabra clave:
Funciones gamma
Functions, gamma
Funciones beta
Functions, beta
Integrales
Integrals
Matriz hermitiana
Funciones Dirichlet
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc/4.0/
id UDEA2_b92fc238d044641ec81dc199377f7a8e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/33794
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv A Class of Integral Identities with Hermitian Matrix Argument
title A Class of Integral Identities with Hermitian Matrix Argument
spellingShingle A Class of Integral Identities with Hermitian Matrix Argument
Funciones gamma
Functions, gamma
Funciones beta
Functions, beta
Integrales
Integrals
Matriz hermitiana
Funciones Dirichlet
title_short A Class of Integral Identities with Hermitian Matrix Argument
title_full A Class of Integral Identities with Hermitian Matrix Argument
title_fullStr A Class of Integral Identities with Hermitian Matrix Argument
title_full_unstemmed A Class of Integral Identities with Hermitian Matrix Argument
title_sort A Class of Integral Identities with Hermitian Matrix Argument
dc.creator.fl_str_mv Nagar, Daya Krishna
Gupta, Arjun Kumar
Sánchez Herrera, Luz Estela
dc.contributor.author.none.fl_str_mv Nagar, Daya Krishna
Gupta, Arjun Kumar
Sánchez Herrera, Luz Estela
dc.contributor.researchgroup.spa.fl_str_mv Análisis Multivariado
dc.subject.lemb.none.fl_str_mv Funciones gamma
Functions, gamma
Funciones beta
Functions, beta
Integrales
Integrals
topic Funciones gamma
Functions, gamma
Funciones beta
Functions, beta
Integrales
Integrals
Matriz hermitiana
Funciones Dirichlet
dc.subject.proposal.spa.fl_str_mv Matriz hermitiana
Funciones Dirichlet
description ABSTRACT: The gamma, beta and Dirichlet functions have been generalized in several ways by Ingham, Siegel, Bellman and Olkin. These authors defined them as integrals having the integrand as a scalar function of real symmetric matrix. In this article, we have defined and studied these functions when the integrand is a scalar function of Hermitian matrix.
publishDate 2006
dc.date.issued.none.fl_str_mv 2006
dc.date.accessioned.none.fl_str_mv 2023-03-08T15:15:37Z
dc.date.available.none.fl_str_mv 2023-03-08T15:15:37Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Nagar, Daya & Gupta, Arjun & Sánchez, Luz. (2006). A Class of Integral Identities with Hermitian Matrix Argument. Proceedings of the American Mathematical Society. 134. 3329-3341. 10.2307/4098042.
dc.identifier.issn.none.fl_str_mv 0002-9939
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/33794
dc.identifier.doi.none.fl_str_mv 10.2307/4098042
dc.identifier.eissn.none.fl_str_mv 1088-6826
identifier_str_mv Nagar, Daya & Gupta, Arjun & Sánchez, Luz. (2006). A Class of Integral Identities with Hermitian Matrix Argument. Proceedings of the American Mathematical Society. 134. 3329-3341. 10.2307/4098042.
0002-9939
10.2307/4098042
1088-6826
url https://hdl.handle.net/10495/33794
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Proc. Am. Math. Soc.
dc.relation.citationendpage.spa.fl_str_mv 2341
dc.relation.citationissue.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 2329
dc.relation.citationvolume.spa.fl_str_mv 134
dc.relation.ispartofjournal.spa.fl_str_mv Proceedings of the American Mathematical Society
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Mathematical Society
dc.publisher.place.spa.fl_str_mv Providence, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/eff14f94-b300-4860-a71f-c7193071a23f/download
https://bibliotecadigital.udea.edu.co/bitstreams/a5f040ca-c314-485d-ab5d-a262d9e31cdc/download
https://bibliotecadigital.udea.edu.co/bitstreams/f1777ed7-6ae0-42af-8767-b3962a4f2397/download
https://bibliotecadigital.udea.edu.co/bitstreams/6a83554e-2b25-4041-9274-b7144c6c6995/download
https://bibliotecadigital.udea.edu.co/bitstreams/b0263273-553f-4f2a-86ef-d93b0e270de4/download
bitstream.checksum.fl_str_mv 2128e0d6895963d857974cc0b574fa35
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
22e131b6e8a07c0348df241df3f22463
575b48f24160e1e8e8c272dcec135362
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052498524045312
spelling Nagar, Daya KrishnaGupta, Arjun KumarSánchez Herrera, Luz EstelaAnálisis Multivariado2023-03-08T15:15:37Z2023-03-08T15:15:37Z2006Nagar, Daya & Gupta, Arjun & Sánchez, Luz. (2006). A Class of Integral Identities with Hermitian Matrix Argument. Proceedings of the American Mathematical Society. 134. 3329-3341. 10.2307/4098042.0002-9939https://hdl.handle.net/10495/3379410.2307/40980421088-6826ABSTRACT: The gamma, beta and Dirichlet functions have been generalized in several ways by Ingham, Siegel, Bellman and Olkin. These authors defined them as integrals having the integrand as a scalar function of real symmetric matrix. In this article, we have defined and studied these functions when the integrand is a scalar function of Hermitian matrix.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODICOL000053213application/pdfengAmerican Mathematical SocietyProvidence, Estados Unidoshttps://creativecommons.org/licenses/by-nc/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A Class of Integral Identities with Hermitian Matrix ArgumentArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones gammaFunctions, gammaFunciones betaFunctions, betaIntegralesIntegralsMatriz hermitianaFunciones DirichletProc. Am. Math. Soc.2341112329134Proceedings of the American Mathematical Societygrid.412881.6IN387CE.PublicationORIGINALNagarDaya_2006_AClassIntegralIdentities.pdfNagarDaya_2006_AClassIntegralIdentities.pdfArtículo de investigaciónapplication/pdf203372https://bibliotecadigital.udea.edu.co/bitstreams/eff14f94-b300-4860-a71f-c7193071a23f/download2128e0d6895963d857974cc0b574fa35MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/a5f040ca-c314-485d-ab5d-a262d9e31cdc/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/f1777ed7-6ae0-42af-8767-b3962a4f2397/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2006_AClassIntegralIdentities.pdf.txtNagarDaya_2006_AClassIntegralIdentities.pdf.txtExtracted texttext/plain30046https://bibliotecadigital.udea.edu.co/bitstreams/6a83554e-2b25-4041-9274-b7144c6c6995/download22e131b6e8a07c0348df241df3f22463MD54falseAnonymousREADTHUMBNAILNagarDaya_2006_AClassIntegralIdentities.pdf.jpgNagarDaya_2006_AClassIntegralIdentities.pdf.jpgGenerated Thumbnailimage/jpeg9388https://bibliotecadigital.udea.edu.co/bitstreams/b0263273-553f-4f2a-86ef-d93b0e270de4/download575b48f24160e1e8e8c272dcec135362MD55falseAnonymousREAD10495/33794oai:bibliotecadigital.udea.edu.co:10495/337942025-03-26 23:21:28.972https://creativecommons.org/licenses/by-nc/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=