A Class of Integral Identities with Hermitian Matrix Argument
ABSTRACT: The gamma, beta and Dirichlet functions have been generalized in several ways by Ingham, Siegel, Bellman and Olkin. These authors defined them as integrals having the integrand as a scalar function of real symmetric matrix. In this article, we have defined and studied these functions when...
- Autores:
-
Nagar, Daya Krishna
Gupta, Arjun Kumar
Sánchez Herrera, Luz Estela
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2006
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/33794
- Acceso en línea:
- https://hdl.handle.net/10495/33794
- Palabra clave:
- Funciones gamma
Functions, gamma
Funciones beta
Functions, beta
Integrales
Integrals
Matriz hermitiana
Funciones Dirichlet
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc/4.0/
| Summary: | ABSTRACT: The gamma, beta and Dirichlet functions have been generalized in several ways by Ingham, Siegel, Bellman and Olkin. These authors defined them as integrals having the integrand as a scalar function of real symmetric matrix. In this article, we have defined and studied these functions when the integrand is a scalar function of Hermitian matrix. |
|---|
