Solving Schrödinger equation by meshless methods

ABSTRACT: In this paper we apply a numerical meshless scheme for solving one and two dimensional time independent Schrödinger equation by means of collocation method with Radial Basis Functions interpolants. In particular we approximate the solutions using multiquadrics. The method is tested with so...

Full description

Autores:
Montegranario Riascos, Hebert
Londoño Arboleda, Mauricio Alejandro
Giraldo Gómez, Joaquín Darío
Restrepo, R.L.
Mora Ramos, Miguel Eduardo
Duque Echeverri, Carlos Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30719
Acceso en línea:
https://hdl.handle.net/10495/30719
Palabra clave:
Puntos Cuánticos
Quantum Dots
Pozos cuánticos
Quantum wells
Métodos sin malla
Bajas dimensiones
Ecuación de Schrödinger
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_b8571de4c253df788ff82daf980c1588
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30719
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Solving Schrödinger equation by meshless methods
title Solving Schrödinger equation by meshless methods
spellingShingle Solving Schrödinger equation by meshless methods
Puntos Cuánticos
Quantum Dots
Pozos cuánticos
Quantum wells
Métodos sin malla
Bajas dimensiones
Ecuación de Schrödinger
title_short Solving Schrödinger equation by meshless methods
title_full Solving Schrödinger equation by meshless methods
title_fullStr Solving Schrödinger equation by meshless methods
title_full_unstemmed Solving Schrödinger equation by meshless methods
title_sort Solving Schrödinger equation by meshless methods
dc.creator.fl_str_mv Montegranario Riascos, Hebert
Londoño Arboleda, Mauricio Alejandro
Giraldo Gómez, Joaquín Darío
Restrepo, R.L.
Mora Ramos, Miguel Eduardo
Duque Echeverri, Carlos Alberto
dc.contributor.author.none.fl_str_mv Montegranario Riascos, Hebert
Londoño Arboleda, Mauricio Alejandro
Giraldo Gómez, Joaquín Darío
Restrepo, R.L.
Mora Ramos, Miguel Eduardo
Duque Echeverri, Carlos Alberto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Tomografía e Inversión
dc.subject.decs.none.fl_str_mv Puntos Cuánticos
Quantum Dots
topic Puntos Cuánticos
Quantum Dots
Pozos cuánticos
Quantum wells
Métodos sin malla
Bajas dimensiones
Ecuación de Schrödinger
dc.subject.lemb.none.fl_str_mv Pozos cuánticos
Quantum wells
dc.subject.proposal.spa.fl_str_mv Métodos sin malla
Bajas dimensiones
Ecuación de Schrödinger
description ABSTRACT: In this paper we apply a numerical meshless scheme for solving one and two dimensional time independent Schrödinger equation by means of collocation method with Radial Basis Functions interpolants. In particular we approximate the solutions using multiquadrics. The method is tested with some of the well-known configurations of Schrödinger equation and compared with analytical solutions, showing a great accuracy and stability. We also provide some insight on how to use meshless algorithms for obtaining the eigenenergies and wavefunctions of one- and two-dimensional Schrodinger problems.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2022-09-20T19:39:13Z
dc.date.available.none.fl_str_mv 2022-09-20T19:39:13Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Montegranario, H., Londoño, M.A., Giraldo-Gómez, J.D., Restrepo, R.L., Mora-Ramos, M.E., & Duque, C.A.. (2016). Solving Schrödinger equation by meshless methods. Revista mexicana de física E, 62(2), 96-107.
dc.identifier.issn.none.fl_str_mv 0035-001X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30719
dc.identifier.eissn.none.fl_str_mv 2683-2224
identifier_str_mv Montegranario, H., Londoño, M.A., Giraldo-Gómez, J.D., Restrepo, R.L., Mora-Ramos, M.E., & Duque, C.A.. (2016). Solving Schrödinger equation by meshless methods. Revista mexicana de física E, 62(2), 96-107.
0035-001X
2683-2224
url https://hdl.handle.net/10495/30719
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Mex. Fís.
dc.relation.citationendpage.spa.fl_str_mv 107
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 96
dc.relation.citationvolume.spa.fl_str_mv 62
dc.relation.ispartofjournal.spa.fl_str_mv Revista Mexicana de Física
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sociedad Mexicana de Física A.C.
dc.publisher.place.spa.fl_str_mv Ciudad de México, México
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/c3dd2b41-ae62-4447-afc6-e9ab188b1b83/download
https://bibliotecadigital.udea.edu.co/bitstreams/550c52a5-20b2-4956-b48a-db500e4c7166/download
https://bibliotecadigital.udea.edu.co/bitstreams/8ad5c8f0-297d-4d53-9db5-bb5a6fe1439a/download
https://bibliotecadigital.udea.edu.co/bitstreams/a19b61f6-62ac-4862-bbe3-657a27184976/download
https://bibliotecadigital.udea.edu.co/bitstreams/7aa82e6c-82c7-4bb1-8aa8-e5e3d92c511e/download
bitstream.checksum.fl_str_mv b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
0178f21e9512539a2f0110a1b980f9b9
cc979cb56eded594c55599180f23b9e5
869514bb0754831a56530aab7a563a94
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052552660975616
spelling Montegranario Riascos, HebertLondoño Arboleda, Mauricio AlejandroGiraldo Gómez, Joaquín DaríoRestrepo, R.L.Mora Ramos, Miguel EduardoDuque Echeverri, Carlos AlbertoGrupo de Tomografía e Inversión2022-09-20T19:39:13Z2022-09-20T19:39:13Z2016Montegranario, H., Londoño, M.A., Giraldo-Gómez, J.D., Restrepo, R.L., Mora-Ramos, M.E., & Duque, C.A.. (2016). Solving Schrödinger equation by meshless methods. Revista mexicana de física E, 62(2), 96-107.0035-001Xhttps://hdl.handle.net/10495/307192683-2224ABSTRACT: In this paper we apply a numerical meshless scheme for solving one and two dimensional time independent Schrödinger equation by means of collocation method with Radial Basis Functions interpolants. In particular we approximate the solutions using multiquadrics. The method is tested with some of the well-known configurations of Schrödinger equation and compared with analytical solutions, showing a great accuracy and stability. We also provide some insight on how to use meshless algorithms for obtaining the eigenenergies and wavefunctions of one- and two-dimensional Schrodinger problems.COL015479912application/pdfengSociedad Mexicana de Física A.C.Ciudad de México, Méxicohttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Solving Schrödinger equation by meshless methodsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPuntos CuánticosQuantum DotsPozos cuánticosQuantum wellsMétodos sin mallaBajas dimensionesEcuación de SchrödingerRev. Mex. Fís.10729662Revista Mexicana de FísicaPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/c3dd2b41-ae62-4447-afc6-e9ab188b1b83/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/550c52a5-20b2-4956-b48a-db500e4c7166/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALMontegranarioH_2016_SolvingSchrodingerEquation.pdfMontegranarioH_2016_SolvingSchrodingerEquation.pdfArtículo de investigaciónapplication/pdf3773238https://bibliotecadigital.udea.edu.co/bitstreams/8ad5c8f0-297d-4d53-9db5-bb5a6fe1439a/download0178f21e9512539a2f0110a1b980f9b9MD51trueAnonymousREADTEXTMontegranarioH_2016_SolvingSchrodingerEquation.pdf.txtMontegranarioH_2016_SolvingSchrodingerEquation.pdf.txtExtracted texttext/plain44811https://bibliotecadigital.udea.edu.co/bitstreams/a19b61f6-62ac-4862-bbe3-657a27184976/downloadcc979cb56eded594c55599180f23b9e5MD54falseAnonymousREADTHUMBNAILMontegranarioH_2016_SolvingSchrodingerEquation.pdf.jpgMontegranarioH_2016_SolvingSchrodingerEquation.pdf.jpgGenerated Thumbnailimage/jpeg18118https://bibliotecadigital.udea.edu.co/bitstreams/7aa82e6c-82c7-4bb1-8aa8-e5e3d92c511e/download869514bb0754831a56530aab7a563a94MD55falseAnonymousREAD10495/30719oai:bibliotecadigital.udea.edu.co:10495/307192025-03-27 00:13:02.884http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=