Quantifying the performance of MEG source reconstruction using resting state data
ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large...
- Autores:
-
López Hincapié, José David
Little, Simon
Bonaiuto, James
S. Meyer, Sofie
Bestmann, Sven
Barnes, Gareth
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/41650
- Acceso en línea:
- https://hdl.handle.net/10495/41650
- Palabra clave:
- Diagnóstico por Imagen
Diagnostic Imaging
Magnetoencefalografía
Magnetoencephalography
Corteza Cerebral
Cerebral Cortex
Neuroimagen Funcional
Functional Neuroimaging
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Imagen por Resonancia Magnética
Magnetic Resonance Imaging
Modelos Anatómicos
Models, Anatomic
Modelos Teóricos
Models, Theoretical
Descanso
Rest
http://id.nlm.nih.gov/mesh/D003952
http://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D002540
https://id.nlm.nih.gov/mesh/D059907
https://id.nlm.nih.gov/mesh/D007091
https://id.nlm.nih.gov/mesh/D008279
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D008962
https://id.nlm.nih.gov/mesh/D012146
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_b6fe6b6a30cc5798245dd6cf7c4157d9 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/41650 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Quantifying the performance of MEG source reconstruction using resting state data |
| title |
Quantifying the performance of MEG source reconstruction using resting state data |
| spellingShingle |
Quantifying the performance of MEG source reconstruction using resting state data Diagnóstico por Imagen Diagnostic Imaging Magnetoencefalografía Magnetoencephalography Corteza Cerebral Cerebral Cortex Neuroimagen Funcional Functional Neuroimaging Procesamiento de Imagen Asistido por Computador Image Processing, Computer-Assisted Imagen por Resonancia Magnética Magnetic Resonance Imaging Modelos Anatómicos Models, Anatomic Modelos Teóricos Models, Theoretical Descanso Rest http://id.nlm.nih.gov/mesh/D003952 http://id.nlm.nih.gov/mesh/D015225 https://id.nlm.nih.gov/mesh/D002540 https://id.nlm.nih.gov/mesh/D059907 https://id.nlm.nih.gov/mesh/D007091 https://id.nlm.nih.gov/mesh/D008279 https://id.nlm.nih.gov/mesh/D008953 https://id.nlm.nih.gov/mesh/D008962 https://id.nlm.nih.gov/mesh/D012146 |
| title_short |
Quantifying the performance of MEG source reconstruction using resting state data |
| title_full |
Quantifying the performance of MEG source reconstruction using resting state data |
| title_fullStr |
Quantifying the performance of MEG source reconstruction using resting state data |
| title_full_unstemmed |
Quantifying the performance of MEG source reconstruction using resting state data |
| title_sort |
Quantifying the performance of MEG source reconstruction using resting state data |
| dc.creator.fl_str_mv |
López Hincapié, José David Little, Simon Bonaiuto, James S. Meyer, Sofie Bestmann, Sven Barnes, Gareth |
| dc.contributor.author.none.fl_str_mv |
López Hincapié, José David Little, Simon Bonaiuto, James S. Meyer, Sofie Bestmann, Sven Barnes, Gareth |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.decs.none.fl_str_mv |
Diagnóstico por Imagen Diagnostic Imaging Magnetoencefalografía Magnetoencephalography Corteza Cerebral Cerebral Cortex Neuroimagen Funcional Functional Neuroimaging Procesamiento de Imagen Asistido por Computador Image Processing, Computer-Assisted Imagen por Resonancia Magnética Magnetic Resonance Imaging Modelos Anatómicos Models, Anatomic Modelos Teóricos Models, Theoretical Descanso Rest |
| topic |
Diagnóstico por Imagen Diagnostic Imaging Magnetoencefalografía Magnetoencephalography Corteza Cerebral Cerebral Cortex Neuroimagen Funcional Functional Neuroimaging Procesamiento de Imagen Asistido por Computador Image Processing, Computer-Assisted Imagen por Resonancia Magnética Magnetic Resonance Imaging Modelos Anatómicos Models, Anatomic Modelos Teóricos Models, Theoretical Descanso Rest http://id.nlm.nih.gov/mesh/D003952 http://id.nlm.nih.gov/mesh/D015225 https://id.nlm.nih.gov/mesh/D002540 https://id.nlm.nih.gov/mesh/D059907 https://id.nlm.nih.gov/mesh/D007091 https://id.nlm.nih.gov/mesh/D008279 https://id.nlm.nih.gov/mesh/D008953 https://id.nlm.nih.gov/mesh/D008962 https://id.nlm.nih.gov/mesh/D012146 |
| dc.subject.meshuri.none.fl_str_mv |
http://id.nlm.nih.gov/mesh/D003952 http://id.nlm.nih.gov/mesh/D015225 https://id.nlm.nih.gov/mesh/D002540 https://id.nlm.nih.gov/mesh/D059907 https://id.nlm.nih.gov/mesh/D007091 https://id.nlm.nih.gov/mesh/D008279 https://id.nlm.nih.gov/mesh/D008953 https://id.nlm.nih.gov/mesh/D008962 https://id.nlm.nih.gov/mesh/D012146 |
| description |
ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We describe a method with minimal selection bias to quantify algorithm performance using human resting state data. These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best mean anatomical discrimination (3.7mm) compared with Minimum Norm/LORETA (6.0mm) and Multiple Sparse Priors (9.4mm). This pattern was replicated in the second (conventional dataset) although with a marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the abundant resting state data now commonly available could be used to refine and validate MEG source reconstruction methods and/or recording paradigms. |
| publishDate |
2018 |
| dc.date.issued.none.fl_str_mv |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2024-08-30T22:32:34Z |
| dc.date.available.none.fl_str_mv |
2024-08-30T22:32:34Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.030 |
| dc.identifier.issn.none.fl_str_mv |
1053-8119 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/41650 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.neuroimage.2018.07.030 |
| dc.identifier.eissn.none.fl_str_mv |
1095-9572 |
| identifier_str_mv |
Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.030 1053-8119 10.1016/j.neuroimage.2018.07.030 1095-9572 |
| url |
https://hdl.handle.net/10495/41650 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Neuroimage |
| dc.relation.citationendpage.spa.fl_str_mv |
460 |
| dc.relation.citationstartpage.spa.fl_str_mv |
453 |
| dc.relation.citationvolume.spa.fl_str_mv |
181 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
NeuroImage |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
8 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Orlando, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/4543cce6-9fd9-4486-b903-2619e9e3e32a/download https://bibliotecadigital.udea.edu.co/bitstreams/88a7249a-2ba5-4682-954c-0be8f473ef90/download https://bibliotecadigital.udea.edu.co/bitstreams/cf2e81ad-127b-4e4c-9910-1f67a9da08cc/download https://bibliotecadigital.udea.edu.co/bitstreams/35ddb0c7-e68f-4dac-82fa-db087cca29e6/download https://bibliotecadigital.udea.edu.co/bitstreams/45fafeed-2dfb-4e29-825e-b31a79ad2ad6/download |
| bitstream.checksum.fl_str_mv |
5886f11fe1e25951018ac8a2d1251c25 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 c434f34a245e0f331c8ac751fa50fc31 7fca5eacf0ca0e5bfba7997f541d5c5b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052172493455360 |
| spelling |
López Hincapié, José DavidLittle, SimonBonaiuto, JamesS. Meyer, SofieBestmann, SvenBarnes, GarethSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-08-30T22:32:34Z2024-08-30T22:32:34Z2018Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.0301053-8119https://hdl.handle.net/10495/4165010.1016/j.neuroimage.2018.07.0301095-9572ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We describe a method with minimal selection bias to quantify algorithm performance using human resting state data. These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best mean anatomical discrimination (3.7mm) compared with Minimum Norm/LORETA (6.0mm) and Multiple Sparse Priors (9.4mm). This pattern was replicated in the second (conventional dataset) although with a marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the abundant resting state data now commonly available could be used to refine and validate MEG source reconstruction methods and/or recording paradigms.COL00107178 páginasapplication/pdfengElsevierOrlando, Estados Unidoshttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quantifying the performance of MEG source reconstruction using resting state dataArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionDiagnóstico por ImagenDiagnostic ImagingMagnetoencefalografíaMagnetoencephalographyCorteza CerebralCerebral CortexNeuroimagen FuncionalFunctional NeuroimagingProcesamiento de Imagen Asistido por ComputadorImage Processing, Computer-AssistedImagen por Resonancia MagnéticaMagnetic Resonance ImagingModelos AnatómicosModels, AnatomicModelos TeóricosModels, TheoreticalDescansoResthttp://id.nlm.nih.gov/mesh/D003952http://id.nlm.nih.gov/mesh/D015225https://id.nlm.nih.gov/mesh/D002540https://id.nlm.nih.gov/mesh/D059907https://id.nlm.nih.gov/mesh/D007091https://id.nlm.nih.gov/mesh/D008279https://id.nlm.nih.gov/mesh/D008953https://id.nlm.nih.gov/mesh/D008962https://id.nlm.nih.gov/mesh/D012146Neuroimage460453181NeuroImagePublicationORIGINALLittleSimon_2018_Quantifying_Performance.pdfLittleSimon_2018_Quantifying_Performance.pdfArtículo de investigaciónapplication/pdf1589832https://bibliotecadigital.udea.edu.co/bitstreams/4543cce6-9fd9-4486-b903-2619e9e3e32a/download5886f11fe1e25951018ac8a2d1251c25MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/88a7249a-2ba5-4682-954c-0be8f473ef90/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cf2e81ad-127b-4e4c-9910-1f67a9da08cc/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTLittleSimon_2018_Quantifying_Performance.pdf.txtLittleSimon_2018_Quantifying_Performance.pdf.txtExtracted texttext/plain60752https://bibliotecadigital.udea.edu.co/bitstreams/35ddb0c7-e68f-4dac-82fa-db087cca29e6/downloadc434f34a245e0f331c8ac751fa50fc31MD56falseAnonymousREADTHUMBNAILLittleSimon_2018_Quantifying_Performance.pdf.jpgLittleSimon_2018_Quantifying_Performance.pdf.jpgGenerated Thumbnailimage/jpeg14262https://bibliotecadigital.udea.edu.co/bitstreams/45fafeed-2dfb-4e29-825e-b31a79ad2ad6/download7fca5eacf0ca0e5bfba7997f541d5c5bMD57falseAnonymousREAD10495/41650oai:bibliotecadigital.udea.edu.co:10495/416502025-03-26 18:04:16.767https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
