Quantifying the performance of MEG source reconstruction using resting state data

ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large...

Full description

Autores:
López Hincapié, José David
Little, Simon
Bonaiuto, James
S. Meyer, Sofie
Bestmann, Sven
Barnes, Gareth
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/41650
Acceso en línea:
https://hdl.handle.net/10495/41650
Palabra clave:
Diagnóstico por Imagen
Diagnostic Imaging
Magnetoencefalografía
Magnetoencephalography
Corteza Cerebral
Cerebral Cortex
Neuroimagen Funcional
Functional Neuroimaging
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Imagen por Resonancia Magnética
Magnetic Resonance Imaging
Modelos Anatómicos
Models, Anatomic
Modelos Teóricos
Models, Theoretical
Descanso
Rest
http://id.nlm.nih.gov/mesh/D003952
http://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D002540
https://id.nlm.nih.gov/mesh/D059907
https://id.nlm.nih.gov/mesh/D007091
https://id.nlm.nih.gov/mesh/D008279
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D008962
https://id.nlm.nih.gov/mesh/D012146
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_b6fe6b6a30cc5798245dd6cf7c4157d9
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/41650
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Quantifying the performance of MEG source reconstruction using resting state data
title Quantifying the performance of MEG source reconstruction using resting state data
spellingShingle Quantifying the performance of MEG source reconstruction using resting state data
Diagnóstico por Imagen
Diagnostic Imaging
Magnetoencefalografía
Magnetoencephalography
Corteza Cerebral
Cerebral Cortex
Neuroimagen Funcional
Functional Neuroimaging
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Imagen por Resonancia Magnética
Magnetic Resonance Imaging
Modelos Anatómicos
Models, Anatomic
Modelos Teóricos
Models, Theoretical
Descanso
Rest
http://id.nlm.nih.gov/mesh/D003952
http://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D002540
https://id.nlm.nih.gov/mesh/D059907
https://id.nlm.nih.gov/mesh/D007091
https://id.nlm.nih.gov/mesh/D008279
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D008962
https://id.nlm.nih.gov/mesh/D012146
title_short Quantifying the performance of MEG source reconstruction using resting state data
title_full Quantifying the performance of MEG source reconstruction using resting state data
title_fullStr Quantifying the performance of MEG source reconstruction using resting state data
title_full_unstemmed Quantifying the performance of MEG source reconstruction using resting state data
title_sort Quantifying the performance of MEG source reconstruction using resting state data
dc.creator.fl_str_mv López Hincapié, José David
Little, Simon
Bonaiuto, James
S. Meyer, Sofie
Bestmann, Sven
Barnes, Gareth
dc.contributor.author.none.fl_str_mv López Hincapié, José David
Little, Simon
Bonaiuto, James
S. Meyer, Sofie
Bestmann, Sven
Barnes, Gareth
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.decs.none.fl_str_mv Diagnóstico por Imagen
Diagnostic Imaging
Magnetoencefalografía
Magnetoencephalography
Corteza Cerebral
Cerebral Cortex
Neuroimagen Funcional
Functional Neuroimaging
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Imagen por Resonancia Magnética
Magnetic Resonance Imaging
Modelos Anatómicos
Models, Anatomic
Modelos Teóricos
Models, Theoretical
Descanso
Rest
topic Diagnóstico por Imagen
Diagnostic Imaging
Magnetoencefalografía
Magnetoencephalography
Corteza Cerebral
Cerebral Cortex
Neuroimagen Funcional
Functional Neuroimaging
Procesamiento de Imagen Asistido por Computador
Image Processing, Computer-Assisted
Imagen por Resonancia Magnética
Magnetic Resonance Imaging
Modelos Anatómicos
Models, Anatomic
Modelos Teóricos
Models, Theoretical
Descanso
Rest
http://id.nlm.nih.gov/mesh/D003952
http://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D002540
https://id.nlm.nih.gov/mesh/D059907
https://id.nlm.nih.gov/mesh/D007091
https://id.nlm.nih.gov/mesh/D008279
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D008962
https://id.nlm.nih.gov/mesh/D012146
dc.subject.meshuri.none.fl_str_mv http://id.nlm.nih.gov/mesh/D003952
http://id.nlm.nih.gov/mesh/D015225
https://id.nlm.nih.gov/mesh/D002540
https://id.nlm.nih.gov/mesh/D059907
https://id.nlm.nih.gov/mesh/D007091
https://id.nlm.nih.gov/mesh/D008279
https://id.nlm.nih.gov/mesh/D008953
https://id.nlm.nih.gov/mesh/D008962
https://id.nlm.nih.gov/mesh/D012146
description ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We describe a method with minimal selection bias to quantify algorithm performance using human resting state data. These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best mean anatomical discrimination (3.7mm) compared with Minimum Norm/LORETA (6.0mm) and Multiple Sparse Priors (9.4mm). This pattern was replicated in the second (conventional dataset) although with a marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the abundant resting state data now commonly available could be used to refine and validate MEG source reconstruction methods and/or recording paradigms.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2024-08-30T22:32:34Z
dc.date.available.none.fl_str_mv 2024-08-30T22:32:34Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.030
dc.identifier.issn.none.fl_str_mv 1053-8119
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/41650
dc.identifier.doi.none.fl_str_mv 10.1016/j.neuroimage.2018.07.030
dc.identifier.eissn.none.fl_str_mv 1095-9572
identifier_str_mv Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.030
1053-8119
10.1016/j.neuroimage.2018.07.030
1095-9572
url https://hdl.handle.net/10495/41650
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Neuroimage
dc.relation.citationendpage.spa.fl_str_mv 460
dc.relation.citationstartpage.spa.fl_str_mv 453
dc.relation.citationvolume.spa.fl_str_mv 181
dc.relation.ispartofjournal.spa.fl_str_mv NeuroImage
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Orlando, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/4543cce6-9fd9-4486-b903-2619e9e3e32a/download
https://bibliotecadigital.udea.edu.co/bitstreams/88a7249a-2ba5-4682-954c-0be8f473ef90/download
https://bibliotecadigital.udea.edu.co/bitstreams/cf2e81ad-127b-4e4c-9910-1f67a9da08cc/download
https://bibliotecadigital.udea.edu.co/bitstreams/35ddb0c7-e68f-4dac-82fa-db087cca29e6/download
https://bibliotecadigital.udea.edu.co/bitstreams/45fafeed-2dfb-4e29-825e-b31a79ad2ad6/download
bitstream.checksum.fl_str_mv 5886f11fe1e25951018ac8a2d1251c25
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
c434f34a245e0f331c8ac751fa50fc31
7fca5eacf0ca0e5bfba7997f541d5c5b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052172493455360
spelling López Hincapié, José DavidLittle, SimonBonaiuto, JamesS. Meyer, SofieBestmann, SvenBarnes, GarethSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-08-30T22:32:34Z2024-08-30T22:32:34Z2018Little, S., Bonaiuto, J., Meyer, S. S., Lopez, J., Bestmann, S., & Barnes, G. (2018). Quantifying the performance of MEG source reconstruction using resting state data. NeuroImage, 181, 453–460. https://doi.org/10.1016/j.neuroimage.2018.07.0301053-8119https://hdl.handle.net/10495/4165010.1016/j.neuroimage.2018.07.0301095-9572ABSTRACT: In magnetoencephalography (MEG) research there are a variety of inversion methods to transform sensor data into estimates of brain activity. Each new inversion scheme is generally justified against a specific simulated or task scenario. The choice of this scenario will however have a large impact on how well the scheme performs. We describe a method with minimal selection bias to quantify algorithm performance using human resting state data. These recordings provide a generic, heterogeneous, and plentiful functional substrate against which to test different MEG recording and reconstruction approaches. We used a Hidden Markov model to spatio-temporally partition data into self-similar dynamic states. To test the anatomical precision that could be achieved, we then inverted these data onto libraries of systematically distorted subject-specific cortical meshes and compared the quality of the fit using cross validation and a Free energy metric. This revealed which inversion scheme was able to identify the least distorted (most accurate) anatomical models, and allowed us to quantify an upper bound on the mean anatomical distortion accordingly. We used two resting state datasets, one recorded with head-casts and one without. In the head-cast data, the Empirical Bayesian Beamformer (EBB) algorithm showed the best mean anatomical discrimination (3.7mm) compared with Minimum Norm/LORETA (6.0mm) and Multiple Sparse Priors (9.4mm). This pattern was replicated in the second (conventional dataset) although with a marginally poorer (non-significant) prediction of the missing (cross-validated) data. Our findings suggest that the abundant resting state data now commonly available could be used to refine and validate MEG source reconstruction methods and/or recording paradigms.COL00107178 páginasapplication/pdfengElsevierOrlando, Estados Unidoshttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quantifying the performance of MEG source reconstruction using resting state dataArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionDiagnóstico por ImagenDiagnostic ImagingMagnetoencefalografíaMagnetoencephalographyCorteza CerebralCerebral CortexNeuroimagen FuncionalFunctional NeuroimagingProcesamiento de Imagen Asistido por ComputadorImage Processing, Computer-AssistedImagen por Resonancia MagnéticaMagnetic Resonance ImagingModelos AnatómicosModels, AnatomicModelos TeóricosModels, TheoreticalDescansoResthttp://id.nlm.nih.gov/mesh/D003952http://id.nlm.nih.gov/mesh/D015225https://id.nlm.nih.gov/mesh/D002540https://id.nlm.nih.gov/mesh/D059907https://id.nlm.nih.gov/mesh/D007091https://id.nlm.nih.gov/mesh/D008279https://id.nlm.nih.gov/mesh/D008953https://id.nlm.nih.gov/mesh/D008962https://id.nlm.nih.gov/mesh/D012146Neuroimage460453181NeuroImagePublicationORIGINALLittleSimon_2018_Quantifying_Performance.pdfLittleSimon_2018_Quantifying_Performance.pdfArtículo de investigaciónapplication/pdf1589832https://bibliotecadigital.udea.edu.co/bitstreams/4543cce6-9fd9-4486-b903-2619e9e3e32a/download5886f11fe1e25951018ac8a2d1251c25MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/88a7249a-2ba5-4682-954c-0be8f473ef90/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cf2e81ad-127b-4e4c-9910-1f67a9da08cc/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTLittleSimon_2018_Quantifying_Performance.pdf.txtLittleSimon_2018_Quantifying_Performance.pdf.txtExtracted texttext/plain60752https://bibliotecadigital.udea.edu.co/bitstreams/35ddb0c7-e68f-4dac-82fa-db087cca29e6/downloadc434f34a245e0f331c8ac751fa50fc31MD56falseAnonymousREADTHUMBNAILLittleSimon_2018_Quantifying_Performance.pdf.jpgLittleSimon_2018_Quantifying_Performance.pdf.jpgGenerated Thumbnailimage/jpeg14262https://bibliotecadigital.udea.edu.co/bitstreams/45fafeed-2dfb-4e29-825e-b31a79ad2ad6/download7fca5eacf0ca0e5bfba7997f541d5c5bMD57falseAnonymousREAD10495/41650oai:bibliotecadigital.udea.edu.co:10495/416502025-03-26 18:04:16.767https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=