The set of k-units modulo n

Let R be a ring with identity, U(R) the group of units of R and k a positive integer. We say that a ∈ U(R) is k-unit if ak = 1. Particularly, if the ring R is Zn, for a positive integer n, we will say that a is a k-unit modulo n. We denote with Uk(n) the set of k-units modulo n. By duk(n) we represe...

Full description

Autores:
Caranguay Mainguez, Jhony Fernando
Castillo Gómez, John Hermes
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46174
Acceso en línea:
https://hdl.handle.net/10495/46174
Palabra clave:
Teoría de los números
Numbers, Theory of
Álgebra
Algebra
Conjunto unitario de un anillo
Conjunto unitario de un anillo
Unidad K
Número de carmichael
Número de Knödel
Diagonal property
K-unit
Carmichael number
Knödel number
Propiedad diagonal
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Let R be a ring with identity, U(R) the group of units of R and k a positive integer. We say that a ∈ U(R) is k-unit if ak = 1. Particularly, if the ring R is Zn, for a positive integer n, we will say that a is a k-unit modulo n. We denote with Uk(n) the set of k-units modulo n. By duk(n) we represent the number of k-units modulo n and with rduk(n) = φ(n) duk(n) the ratio of k-units modulo n, where φ is the Euler phi function. Recently, S. K. Chebolu proved that the solutions of the equation rdu2(n) = 1 are the divisors of 24. The main result of this work, is that for a given k, we find the positive integers n such that rduk(n) = 1. Finally, we give some connections of this equation with Carmichael’s numbers and two of its generalizations: Knödel numbers and generalized Carmichael numbers.