Some equivalences between homotopy and derived categories
ABSTRACT: We prove two triangle equivalences. One is the triangle equivalence between the homotopy category of the bounded below complexes of Ext-injectives objects of a closed by subobjects and co-resolving subcategory of an abelian category and the derived category of the bounded below complexes o...
- Autores:
-
Giraldo Salazar, Hernán Alonso
Moreno Cañadas, Agustín
Saldarriaga Ortiz, Omar Darío
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30843
- Acceso en línea:
- https://hdl.handle.net/10495/30843
- Palabra clave:
- Equivalencias de homotopía
Homotopy equivalences
Teoría de homotopía
Homotopy theory
Grupos abelianos
Abelian groups
Topología algebraica
Algebraic topology
Auto-orthogonal category
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_b0cc38ccfcbb5bb750621a2791e94e5e |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30843 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Some equivalences between homotopy and derived categories |
| title |
Some equivalences between homotopy and derived categories |
| spellingShingle |
Some equivalences between homotopy and derived categories Equivalencias de homotopía Homotopy equivalences Teoría de homotopía Homotopy theory Grupos abelianos Abelian groups Topología algebraica Algebraic topology Auto-orthogonal category |
| title_short |
Some equivalences between homotopy and derived categories |
| title_full |
Some equivalences between homotopy and derived categories |
| title_fullStr |
Some equivalences between homotopy and derived categories |
| title_full_unstemmed |
Some equivalences between homotopy and derived categories |
| title_sort |
Some equivalences between homotopy and derived categories |
| dc.creator.fl_str_mv |
Giraldo Salazar, Hernán Alonso Moreno Cañadas, Agustín Saldarriaga Ortiz, Omar Darío |
| dc.contributor.author.none.fl_str_mv |
Giraldo Salazar, Hernán Alonso Moreno Cañadas, Agustín Saldarriaga Ortiz, Omar Darío |
| dc.contributor.researchgroup.spa.fl_str_mv |
Álgebra Teoría de Números y Aplicaciones: ERM Álgebra U de A |
| dc.subject.lemb.none.fl_str_mv |
Equivalencias de homotopía Homotopy equivalences Teoría de homotopía Homotopy theory Grupos abelianos Abelian groups Topología algebraica Algebraic topology |
| topic |
Equivalencias de homotopía Homotopy equivalences Teoría de homotopía Homotopy theory Grupos abelianos Abelian groups Topología algebraica Algebraic topology Auto-orthogonal category |
| dc.subject.proposal.spa.fl_str_mv |
Auto-orthogonal category |
| description |
ABSTRACT: We prove two triangle equivalences. One is the triangle equivalence between the homotopy category of the bounded below complexes of Ext-injectives objects of a closed by subobjects and co-resolving subcategory of an abelian category and the derived category of the bounded below complexes over The other triangle equivalence is between the homotopy category of the bounded cohomology and bounded below complexes over a strongly closed by cokernels of monomorphisms and auto-orthogonal subcategory of an abelian category and the derived category of the bounded cohomology and bounded below complexes over |
| publishDate |
2015 |
| dc.date.issued.none.fl_str_mv |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-25T00:49:47Z |
| dc.date.available.none.fl_str_mv |
2022-09-25T00:49:47Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0972-0871 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30843 |
| dc.identifier.doi.none.fl_str_mv |
10.17654/FJMSSep2015_001_014 |
| dc.identifier.eissn.none.fl_str_mv |
0971-4332 |
| identifier_str_mv |
0972-0871 10.17654/FJMSSep2015_001_014 0971-4332 |
| url |
https://hdl.handle.net/10495/30843 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
98 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Far East Journal of Mathematical Sciences |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Allahabad |
| dc.publisher.place.spa.fl_str_mv |
Allahabad, India |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/d60e5996-16b5-45d1-9c5d-fa5ffbfab98e/download https://bibliotecadigital.udea.edu.co/bitstreams/ba7a5ff9-1038-49a0-9a6c-30be86b6ccd3/download https://bibliotecadigital.udea.edu.co/bitstreams/a96f21cd-f9f3-4904-80bc-042300ca86c7/download https://bibliotecadigital.udea.edu.co/bitstreams/7b4df946-5b2d-4841-bdbe-5ce98eb1444f/download https://bibliotecadigital.udea.edu.co/bitstreams/3763440b-7332-41ee-a5b6-97126eb2b75b/download |
| bitstream.checksum.fl_str_mv |
32ada6c16bfb793ecaadc00e1dd57fd2 e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 7f0d4eea7207f00105243168e9008feb 08b7e153a3a81f569c16bc00a7725756 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052493075644416 |
| spelling |
Giraldo Salazar, Hernán AlonsoMoreno Cañadas, AgustínSaldarriaga Ortiz, Omar DaríoÁlgebra Teoría de Números y Aplicaciones: ERMÁlgebra U de A2022-09-25T00:49:47Z2022-09-25T00:49:47Z20150972-0871https://hdl.handle.net/10495/3084310.17654/FJMSSep2015_001_0140971-4332ABSTRACT: We prove two triangle equivalences. One is the triangle equivalence between the homotopy category of the bounded below complexes of Ext-injectives objects of a closed by subobjects and co-resolving subcategory of an abelian category and the derived category of the bounded below complexes over The other triangle equivalence is between the homotopy category of the bounded cohomology and bounded below complexes over a strongly closed by cokernels of monomorphisms and auto-orthogonal subcategory of an abelian category and the derived category of the bounded cohomology and bounded below complexes overCOL0086896COL001721714application/pdfengUniversidad de AllahabadAllahabad, Indiahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Some equivalences between homotopy and derived categoriesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEquivalencias de homotopíaHomotopy equivalencesTeoría de homotopíaHomotopy theoryGrupos abelianosAbelian groupsTopología algebraicaAlgebraic topologyAuto-orthogonal category141198Far East Journal of Mathematical SciencesPublicationORIGINALGiraldoHernan_2015_SomeEquivalencesBetween .pdfGiraldoHernan_2015_SomeEquivalencesBetween .pdfArtículo de investigaciónapplication/pdf122392https://bibliotecadigital.udea.edu.co/bitstreams/d60e5996-16b5-45d1-9c5d-fa5ffbfab98e/download32ada6c16bfb793ecaadc00e1dd57fd2MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/ba7a5ff9-1038-49a0-9a6c-30be86b6ccd3/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a96f21cd-f9f3-4904-80bc-042300ca86c7/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGiraldoHernan_2015_SomeEquivalencesBetween .pdf.txtGiraldoHernan_2015_SomeEquivalencesBetween .pdf.txtExtracted texttext/plain22706https://bibliotecadigital.udea.edu.co/bitstreams/7b4df946-5b2d-4841-bdbe-5ce98eb1444f/download7f0d4eea7207f00105243168e9008febMD54falseAnonymousREADTHUMBNAILGiraldoHernan_2015_SomeEquivalencesBetween .pdf.jpgGiraldoHernan_2015_SomeEquivalencesBetween .pdf.jpgGenerated Thumbnailimage/jpeg9034https://bibliotecadigital.udea.edu.co/bitstreams/3763440b-7332-41ee-a5b6-97126eb2b75b/download08b7e153a3a81f569c16bc00a7725756MD55falseAnonymousREAD10495/30843oai:bibliotecadigital.udea.edu.co:10495/308432025-03-26 23:12:49.239https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
