Brain-imaging based methodology for OPM sensor placement
ABSTRACT: Optically-pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography. OPMs do not require cryogenic cooling, and can therefore be placed directly on the scalp surface. Unlike c...
- Autores:
-
Duque Muñoz, Leonardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/14490
- Acceso en línea:
- http://hdl.handle.net/10495/14490
- Palabra clave:
- Brain
Cerebro
Optical instruments
Instrumento óptico
Systems of medicine
Sistema médico
http://vocabularies.unesco.org/thesaurus/concept4292
http://vocabularies.unesco.org/thesaurus/concept3237
http://vocabularies.unesco.org/thesaurus/concept244
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_adad6a20846e7fd3233ec30fa5436aa8 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/14490 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Brain-imaging based methodology for OPM sensor placement |
| title |
Brain-imaging based methodology for OPM sensor placement |
| spellingShingle |
Brain-imaging based methodology for OPM sensor placement Brain Cerebro Optical instruments Instrumento óptico Systems of medicine Sistema médico http://vocabularies.unesco.org/thesaurus/concept4292 http://vocabularies.unesco.org/thesaurus/concept3237 http://vocabularies.unesco.org/thesaurus/concept244 |
| title_short |
Brain-imaging based methodology for OPM sensor placement |
| title_full |
Brain-imaging based methodology for OPM sensor placement |
| title_fullStr |
Brain-imaging based methodology for OPM sensor placement |
| title_full_unstemmed |
Brain-imaging based methodology for OPM sensor placement |
| title_sort |
Brain-imaging based methodology for OPM sensor placement |
| dc.creator.fl_str_mv |
Duque Muñoz, Leonardo |
| dc.contributor.advisor.none.fl_str_mv |
Lopez Hincapie, Jose David Vargas Bonilla, Jesus Francisco |
| dc.contributor.author.none.fl_str_mv |
Duque Muñoz, Leonardo |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.unesco.none.fl_str_mv |
Brain Cerebro Optical instruments Instrumento óptico Systems of medicine Sistema médico |
| topic |
Brain Cerebro Optical instruments Instrumento óptico Systems of medicine Sistema médico http://vocabularies.unesco.org/thesaurus/concept4292 http://vocabularies.unesco.org/thesaurus/concept3237 http://vocabularies.unesco.org/thesaurus/concept244 |
| dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept4292 http://vocabularies.unesco.org/thesaurus/concept3237 http://vocabularies.unesco.org/thesaurus/concept244 |
| description |
ABSTRACT: Optically-pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography. OPMs do not require cryogenic cooling, and can therefore be placed directly on the scalp surface. Unlike cryogenic systems based on a well characterised xed arrays essentially linear in applied ux, or electroencephalography sensors that do not need to account for sensors orientation; OPM sensors are no longer rigidly arranged with a scanner system. Therefore, uncertainty in their locations and orientations with respect to the brain, and with respect to one another, must be accounted for. In this thesis dissertation, we propose a methodology to estimate the true sensor geometry of a disturbed array. We use parametric Bayesian inversion methods to perform neural source reconstruction and score among disturbed geometries with Free Energy as a cost function. This geometry disturbance is non-linear, causing local sub-optimal values on Free Energy that we tackle with a Metropolis search. Looking for a robust solution to this sensor placement problem, we develop a Multiple Kernel Learning (MKL) approach to extract the predominant complex dynamics hidden in the data. To do this, a weighted mixture of Gaussian kernels is used to highlight the data relationships, enhancing the data-driven covariance estimation and leading to a more reliable neural source reconstruction. When tested over disturbed OPM geometries, the MKL based solvers turned the Free Energy into a monotonic function, allowing the use of gradient descent optimisation. As a result, we estimate the true geometry of disturbed OPM arrays with a similar error than Metropolis search, but with 90% fewer iterations and allowing a larger search space. Our proposal suggests that a exible and scalable design for sensor placement can be used to harness the potential of OPMs. |
| publishDate |
2019 |
| dc.date.issued.none.fl_str_mv |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2020-05-20T21:47:52Z |
| dc.date.available.none.fl_str_mv |
2020-05-20T21:47:52Z |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/14490 |
| url |
http://hdl.handle.net/10495/14490 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
104 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería Electrónica |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/03042ee1-f06f-4ecd-b9ec-09aa289a4575/download https://bibliotecadigital.udea.edu.co/bitstreams/f7e80b18-29c2-4527-8bd8-27ac5ede7bfb/download https://bibliotecadigital.udea.edu.co/bitstreams/ecbfbe51-4596-4b10-a67f-5680b4bf3bea/download https://bibliotecadigital.udea.edu.co/bitstreams/0c0d67fc-d90f-4481-938a-8eb727f32ad3/download https://bibliotecadigital.udea.edu.co/bitstreams/718281b7-f5d3-4924-8fdd-ab7923af1558/download |
| bitstream.checksum.fl_str_mv |
f7a779c7006c9dc8a6365f4fa4bb491b b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 472f80d1888358f3d64f0f4866babf82 12e4c797da2d7bccac1fe0d7c934f330 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052360509423616 |
| spelling |
Lopez Hincapie, Jose DavidVargas Bonilla, Jesus FranciscoDuque Muñoz, LeonardoSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2020-05-20T21:47:52Z2020-05-20T21:47:52Z2019http://hdl.handle.net/10495/14490ABSTRACT: Optically-pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography. OPMs do not require cryogenic cooling, and can therefore be placed directly on the scalp surface. Unlike cryogenic systems based on a well characterised xed arrays essentially linear in applied ux, or electroencephalography sensors that do not need to account for sensors orientation; OPM sensors are no longer rigidly arranged with a scanner system. Therefore, uncertainty in their locations and orientations with respect to the brain, and with respect to one another, must be accounted for. In this thesis dissertation, we propose a methodology to estimate the true sensor geometry of a disturbed array. We use parametric Bayesian inversion methods to perform neural source reconstruction and score among disturbed geometries with Free Energy as a cost function. This geometry disturbance is non-linear, causing local sub-optimal values on Free Energy that we tackle with a Metropolis search. Looking for a robust solution to this sensor placement problem, we develop a Multiple Kernel Learning (MKL) approach to extract the predominant complex dynamics hidden in the data. To do this, a weighted mixture of Gaussian kernels is used to highlight the data relationships, enhancing the data-driven covariance estimation and leading to a more reliable neural source reconstruction. When tested over disturbed OPM geometries, the MKL based solvers turned the Free Energy into a monotonic function, allowing the use of gradient descent optimisation. As a result, we estimate the true geometry of disturbed OPM arrays with a similar error than Metropolis search, but with 90% fewer iterations and allowing a larger search space. Our proposal suggests that a exible and scalable design for sensor placement can be used to harness the potential of OPMs.DoctoradoDoctor en Ingeniería Electrónica104application/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónicahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Brain-imaging based methodology for OPM sensor placementTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftBrainCerebroOptical instrumentsInstrumento ópticoSystems of medicineSistema médicohttp://vocabularies.unesco.org/thesaurus/concept4292http://vocabularies.unesco.org/thesaurus/concept3237http://vocabularies.unesco.org/thesaurus/concept244PublicationORIGINALDuqueLeonardo_2019_BrainImagingBased.pdfDuqueLeonardo_2019_BrainImagingBased.pdfTesis doctoralapplication/pdf7008270https://bibliotecadigital.udea.edu.co/bitstreams/03042ee1-f06f-4ecd-b9ec-09aa289a4575/downloadf7a779c7006c9dc8a6365f4fa4bb491bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/f7e80b18-29c2-4527-8bd8-27ac5ede7bfb/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ecbfbe51-4596-4b10-a67f-5680b4bf3bea/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTDuqueLeonardo_2019_BrainImagingBased.pdf.txtDuqueLeonardo_2019_BrainImagingBased.pdf.txtExtracted texttext/plain100526https://bibliotecadigital.udea.edu.co/bitstreams/0c0d67fc-d90f-4481-938a-8eb727f32ad3/download472f80d1888358f3d64f0f4866babf82MD54falseAnonymousREADTHUMBNAILDuqueLeonardo_2019_BrainImagingBased.pdf.jpgDuqueLeonardo_2019_BrainImagingBased.pdf.jpgGenerated Thumbnailimage/jpeg12170https://bibliotecadigital.udea.edu.co/bitstreams/718281b7-f5d3-4924-8fdd-ab7923af1558/download12e4c797da2d7bccac1fe0d7c934f330MD55falseAnonymousREAD10495/14490oai:bibliotecadigital.udea.edu.co:10495/144902025-03-26 21:06:28.115https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
