Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
ABSTRACT: Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is...
- Autores:
-
Sánchez Vásquez, Gloria
Villa, Luisa L.
Prado, Jose C.
Kalantari, Mina
Allan, Bruce
Williamson, Anna Lise
Ping Chung, Lap
Collins, Robert J.
Zuna, Rosemary E.
Dunn, S. Terence
Chu, Tang-Yuan
Cubie, Heather A.
Cuschieri, Kate
Knebel Doeberitz, Magnus von
Calleja Macias, Itzel E.
Bosch, Francesc Xavier
Muñoz, Nubia
Ulrich Bernard, Hans
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2005
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/45143
- Acceso en línea:
- https://hdl.handle.net/10495/45143
- Palabra clave:
- Genes Virales
Genes Viral
Genetic Variation
Variación Genética
Datos de Secuencia Molecular
Molecular Sequence Data
Papillomaviridae
Infecciones por Papillomavirus
Papillomavirus Infections
Filogenia
Phylogeny
https://id.nlm.nih.gov/mesh/D005814
https://id.nlm.nih.gov/mesh/D014644
https://id.nlm.nih.gov/mesh/D008969
https://id.nlm.nih.gov/mesh/D027383
https://id.nlm.nih.gov/mesh/D030361
https://id.nlm.nih.gov/mesh/D010802
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_a855e81bb873a955bf0b0b7752e79941 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/45143 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| title |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| spellingShingle |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 Genes Virales Genes Viral Genetic Variation Variación Genética Datos de Secuencia Molecular Molecular Sequence Data Papillomaviridae Infecciones por Papillomavirus Papillomavirus Infections Filogenia Phylogeny https://id.nlm.nih.gov/mesh/D005814 https://id.nlm.nih.gov/mesh/D014644 https://id.nlm.nih.gov/mesh/D008969 https://id.nlm.nih.gov/mesh/D027383 https://id.nlm.nih.gov/mesh/D030361 https://id.nlm.nih.gov/mesh/D010802 |
| title_short |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| title_full |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| title_fullStr |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| title_full_unstemmed |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| title_sort |
Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16 |
| dc.creator.fl_str_mv |
Sánchez Vásquez, Gloria Villa, Luisa L. Prado, Jose C. Kalantari, Mina Allan, Bruce Williamson, Anna Lise Ping Chung, Lap Collins, Robert J. Zuna, Rosemary E. Dunn, S. Terence Chu, Tang-Yuan Cubie, Heather A. Cuschieri, Kate Knebel Doeberitz, Magnus von Calleja Macias, Itzel E. Bosch, Francesc Xavier Muñoz, Nubia Ulrich Bernard, Hans |
| dc.contributor.author.none.fl_str_mv |
Sánchez Vásquez, Gloria Villa, Luisa L. Prado, Jose C. Kalantari, Mina Allan, Bruce Williamson, Anna Lise Ping Chung, Lap Collins, Robert J. Zuna, Rosemary E. Dunn, S. Terence Chu, Tang-Yuan Cubie, Heather A. Cuschieri, Kate Knebel Doeberitz, Magnus von Calleja Macias, Itzel E. Bosch, Francesc Xavier Muñoz, Nubia Ulrich Bernard, Hans |
| dc.contributor.researchgroup.spa.fl_str_mv |
Infección y Cáncer |
| dc.subject.decs.none.fl_str_mv |
Genes Virales Genes Viral Genetic Variation Variación Genética Datos de Secuencia Molecular Molecular Sequence Data Papillomaviridae Infecciones por Papillomavirus Papillomavirus Infections Filogenia Phylogeny |
| topic |
Genes Virales Genes Viral Genetic Variation Variación Genética Datos de Secuencia Molecular Molecular Sequence Data Papillomaviridae Infecciones por Papillomavirus Papillomavirus Infections Filogenia Phylogeny https://id.nlm.nih.gov/mesh/D005814 https://id.nlm.nih.gov/mesh/D014644 https://id.nlm.nih.gov/mesh/D008969 https://id.nlm.nih.gov/mesh/D027383 https://id.nlm.nih.gov/mesh/D030361 https://id.nlm.nih.gov/mesh/D010802 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D005814 https://id.nlm.nih.gov/mesh/D014644 https://id.nlm.nih.gov/mesh/D008969 https://id.nlm.nih.gov/mesh/D027383 https://id.nlm.nih.gov/mesh/D030361 https://id.nlm.nih.gov/mesh/D010802 |
| description |
ABSTRACT: Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is called HPV species 9 and is formed by HPV-16, the most common and best-studied type, together with HPV-31, -33, -35, -52, -58, and -67. Previous worldwide comparisons of HPV-16 samples showed about 2% nucleotide diversity between isolates, which were subsequently termed variants. The distribution of divergent variants has been found to correlate frequently with the geographic origin and the ethnicity of the infected patients and led to the concept of unique African, European, Asian, and Native American HPV-16 variants. In the current study, we address the question of whether geography and ethnicity also correlate with sequence variations found for HPV-31, -35, -52, and -58. This was done by sequencing the long control region in samples derived from Europe, Asia, and Africa, and from immigrant populations in North and South America. We observed maximal divergence between any two variants within each of these four HPV types ranging from 1.8 to 3.6% based on nucleotide exchanges and, occasionally, on insertions and deletions. Similar to the case with HPV-16, these mutations are not random but indicate a relationship between the variants in form of phylogenetic trees. An interesting example is presented by a 16-bp insert in select variants of HPV-35, which appears to have given rise to additional variants by nucleotide exchanges within the insert. All trees showed distinct phylogenetic topologies, ranging from dichotomic branching in the case of HPV-31 to star phylogenies of the other three types. No clear similarities between these types or between these types and HPV-16 exist. While variant branches in some types were specific for Europe, Africa, or East Asia, none of the four trees reflected human evolution and spread to the extent illustrated by HPV-16. One possible explanation is that the rare HPV types that we studied spread and thereby diversified more slowly than the more abundant HPV-16 and may have established much of today's variant diversity already before the worldwide spread of humans 100,000 years ago. Most variants had prototypic amino acid sequences within the E6 oncoprotein and a segment of the L1 capsid protein. Some had one, two, or three amino acid substitutions in these regions, which might indicate biological and pathogenic diversity between the variants of each HPV type. |
| publishDate |
2005 |
| dc.date.issued.none.fl_str_mv |
2005 |
| dc.date.accessioned.none.fl_str_mv |
2025-02-23T00:55:08Z |
| dc.date.available.none.fl_str_mv |
2025-02-23T00:55:08Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson AL, Chung LP, Collins RJ, Zuna RE, Dunn ST, Chu TY, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard HU. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol. 2005 Nov;79(21):13630-40. |
| dc.identifier.issn.none.fl_str_mv |
0022-538X |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/45143 |
| dc.identifier.doi.none.fl_str_mv |
10.1128/JVI.79.21.13630-13640.2005 |
| dc.identifier.eissn.none.fl_str_mv |
1098-5514 |
| identifier_str_mv |
Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson AL, Chung LP, Collins RJ, Zuna RE, Dunn ST, Chu TY, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard HU. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol. 2005 Nov;79(21):13630-40. 0022-538X 10.1128/JVI.79.21.13630-13640.2005 1098-5514 |
| url |
https://hdl.handle.net/10495/45143 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
J. Virol. |
| dc.relation.citationendpage.spa.fl_str_mv |
13640 |
| dc.relation.citationissue.spa.fl_str_mv |
21 |
| dc.relation.citationstartpage.spa.fl_str_mv |
13630 |
| dc.relation.citationvolume.spa.fl_str_mv |
79 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Virology |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
11 Páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
American Society for Microbiology |
| dc.publisher.place.spa.fl_str_mv |
Washington, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/709bbb60-7772-47a1-8bfd-3409cdd19e79/download https://bibliotecadigital.udea.edu.co/bitstreams/82e7d2ed-35fd-4d52-a243-577ed87f4128/download https://bibliotecadigital.udea.edu.co/bitstreams/ec9c01a2-c2e0-43cf-80a5-1a15e05afce4/download https://bibliotecadigital.udea.edu.co/bitstreams/933789b2-dc62-46c8-a562-ef75f969698f/download https://bibliotecadigital.udea.edu.co/bitstreams/532f4206-9783-4216-8db0-7495ed1315e7/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 5eb65204009cefb861fa2534a18b6aa8 97dbd6157b2164efcf751e5ad6858c96 ba69ca577a1173d01f4426479c289aef |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052272440573952 |
| spelling |
Sánchez Vásquez, GloriaVilla, Luisa L.Prado, Jose C.Kalantari, MinaAllan, BruceWilliamson, Anna LisePing Chung, LapCollins, Robert J.Zuna, Rosemary E.Dunn, S. TerenceChu, Tang-YuanCubie, Heather A.Cuschieri, KateKnebel Doeberitz, Magnus vonCalleja Macias, Itzel E.Bosch, Francesc XavierMuñoz, NubiaUlrich Bernard, HansInfección y Cáncer2025-02-23T00:55:08Z2025-02-23T00:55:08Z2005Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson AL, Chung LP, Collins RJ, Zuna RE, Dunn ST, Chu TY, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard HU. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol. 2005 Nov;79(21):13630-40.0022-538Xhttps://hdl.handle.net/10495/4514310.1128/JVI.79.21.13630-13640.20051098-5514ABSTRACT: Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is called HPV species 9 and is formed by HPV-16, the most common and best-studied type, together with HPV-31, -33, -35, -52, -58, and -67. Previous worldwide comparisons of HPV-16 samples showed about 2% nucleotide diversity between isolates, which were subsequently termed variants. The distribution of divergent variants has been found to correlate frequently with the geographic origin and the ethnicity of the infected patients and led to the concept of unique African, European, Asian, and Native American HPV-16 variants. In the current study, we address the question of whether geography and ethnicity also correlate with sequence variations found for HPV-31, -35, -52, and -58. This was done by sequencing the long control region in samples derived from Europe, Asia, and Africa, and from immigrant populations in North and South America. We observed maximal divergence between any two variants within each of these four HPV types ranging from 1.8 to 3.6% based on nucleotide exchanges and, occasionally, on insertions and deletions. Similar to the case with HPV-16, these mutations are not random but indicate a relationship between the variants in form of phylogenetic trees. An interesting example is presented by a 16-bp insert in select variants of HPV-35, which appears to have given rise to additional variants by nucleotide exchanges within the insert. All trees showed distinct phylogenetic topologies, ranging from dichotomic branching in the case of HPV-31 to star phylogenies of the other three types. No clear similarities between these types or between these types and HPV-16 exist. While variant branches in some types were specific for Europe, Africa, or East Asia, none of the four trees reflected human evolution and spread to the extent illustrated by HPV-16. One possible explanation is that the rare HPV types that we studied spread and thereby diversified more slowly than the more abundant HPV-16 and may have established much of today's variant diversity already before the worldwide spread of humans 100,000 years ago. Most variants had prototypic amino acid sequences within the E6 oncoprotein and a segment of the L1 capsid protein. Some had one, two, or three amino acid substitutions in these regions, which might indicate biological and pathogenic diversity between the variants of each HPV type.COL001232811 Páginasapplication/pdfengAmerican Society for MicrobiologyWashington, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16Artículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionGenes ViralesGenes ViralGenetic VariationVariación GenéticaDatos de Secuencia MolecularMolecular Sequence DataPapillomaviridaeInfecciones por PapillomavirusPapillomavirus InfectionsFilogeniaPhylogenyhttps://id.nlm.nih.gov/mesh/D005814https://id.nlm.nih.gov/mesh/D014644https://id.nlm.nih.gov/mesh/D008969https://id.nlm.nih.gov/mesh/D027383https://id.nlm.nih.gov/mesh/D030361https://id.nlm.nih.gov/mesh/D010802J. Virol.13640211363079Journal of VirologyPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/709bbb60-7772-47a1-8bfd-3409cdd19e79/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/82e7d2ed-35fd-4d52-a243-577ed87f4128/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdfSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdfArtículo de investigaciónapplication/pdf734721https://bibliotecadigital.udea.edu.co/bitstreams/ec9c01a2-c2e0-43cf-80a5-1a15e05afce4/download5eb65204009cefb861fa2534a18b6aa8MD51trueAnonymousREADTEXTSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.txtSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.txtExtracted texttext/plain47048https://bibliotecadigital.udea.edu.co/bitstreams/933789b2-dc62-46c8-a562-ef75f969698f/download97dbd6157b2164efcf751e5ad6858c96MD54falseAnonymousREADTHUMBNAILSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.jpgSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.jpgGenerated Thumbnailimage/jpeg16766https://bibliotecadigital.udea.edu.co/bitstreams/532f4206-9783-4216-8db0-7495ed1315e7/downloadba69ca577a1173d01f4426479c289aefMD55falseAnonymousREAD10495/45143oai:bibliotecadigital.udea.edu.co:10495/451432025-03-26 19:40:53.097http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
