Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16

ABSTRACT: Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is...

Full description

Autores:
Sánchez Vásquez, Gloria
Villa, Luisa L.
Prado, Jose C.
Kalantari, Mina
Allan, Bruce
Williamson, Anna Lise
Ping Chung, Lap
Collins, Robert J.
Zuna, Rosemary E.
Dunn, S. Terence
Chu, Tang-Yuan
Cubie, Heather A.
Cuschieri, Kate
Knebel Doeberitz, Magnus von
Calleja Macias, Itzel E.
Bosch, Francesc Xavier
Muñoz, Nubia
Ulrich Bernard, Hans
Tipo de recurso:
Article of investigation
Fecha de publicación:
2005
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45143
Acceso en línea:
https://hdl.handle.net/10495/45143
Palabra clave:
Genes Virales
Genes Viral
Genetic Variation
Variación Genética
Datos de Secuencia Molecular
Molecular Sequence Data
Papillomaviridae
Infecciones por Papillomavirus
Papillomavirus Infections
Filogenia
Phylogeny
https://id.nlm.nih.gov/mesh/D005814
https://id.nlm.nih.gov/mesh/D014644
https://id.nlm.nih.gov/mesh/D008969
https://id.nlm.nih.gov/mesh/D027383
https://id.nlm.nih.gov/mesh/D030361
https://id.nlm.nih.gov/mesh/D010802
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_a855e81bb873a955bf0b0b7752e79941
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45143
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
title Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
spellingShingle Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
Genes Virales
Genes Viral
Genetic Variation
Variación Genética
Datos de Secuencia Molecular
Molecular Sequence Data
Papillomaviridae
Infecciones por Papillomavirus
Papillomavirus Infections
Filogenia
Phylogeny
https://id.nlm.nih.gov/mesh/D005814
https://id.nlm.nih.gov/mesh/D014644
https://id.nlm.nih.gov/mesh/D008969
https://id.nlm.nih.gov/mesh/D027383
https://id.nlm.nih.gov/mesh/D030361
https://id.nlm.nih.gov/mesh/D010802
title_short Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
title_full Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
title_fullStr Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
title_full_unstemmed Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
title_sort Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16
dc.creator.fl_str_mv Sánchez Vásquez, Gloria
Villa, Luisa L.
Prado, Jose C.
Kalantari, Mina
Allan, Bruce
Williamson, Anna Lise
Ping Chung, Lap
Collins, Robert J.
Zuna, Rosemary E.
Dunn, S. Terence
Chu, Tang-Yuan
Cubie, Heather A.
Cuschieri, Kate
Knebel Doeberitz, Magnus von
Calleja Macias, Itzel E.
Bosch, Francesc Xavier
Muñoz, Nubia
Ulrich Bernard, Hans
dc.contributor.author.none.fl_str_mv Sánchez Vásquez, Gloria
Villa, Luisa L.
Prado, Jose C.
Kalantari, Mina
Allan, Bruce
Williamson, Anna Lise
Ping Chung, Lap
Collins, Robert J.
Zuna, Rosemary E.
Dunn, S. Terence
Chu, Tang-Yuan
Cubie, Heather A.
Cuschieri, Kate
Knebel Doeberitz, Magnus von
Calleja Macias, Itzel E.
Bosch, Francesc Xavier
Muñoz, Nubia
Ulrich Bernard, Hans
dc.contributor.researchgroup.spa.fl_str_mv Infección y Cáncer
dc.subject.decs.none.fl_str_mv Genes Virales
Genes Viral
Genetic Variation
Variación Genética
Datos de Secuencia Molecular
Molecular Sequence Data
Papillomaviridae
Infecciones por Papillomavirus
Papillomavirus Infections
Filogenia
Phylogeny
topic Genes Virales
Genes Viral
Genetic Variation
Variación Genética
Datos de Secuencia Molecular
Molecular Sequence Data
Papillomaviridae
Infecciones por Papillomavirus
Papillomavirus Infections
Filogenia
Phylogeny
https://id.nlm.nih.gov/mesh/D005814
https://id.nlm.nih.gov/mesh/D014644
https://id.nlm.nih.gov/mesh/D008969
https://id.nlm.nih.gov/mesh/D027383
https://id.nlm.nih.gov/mesh/D030361
https://id.nlm.nih.gov/mesh/D010802
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D005814
https://id.nlm.nih.gov/mesh/D014644
https://id.nlm.nih.gov/mesh/D008969
https://id.nlm.nih.gov/mesh/D027383
https://id.nlm.nih.gov/mesh/D030361
https://id.nlm.nih.gov/mesh/D010802
description ABSTRACT: Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is called HPV species 9 and is formed by HPV-16, the most common and best-studied type, together with HPV-31, -33, -35, -52, -58, and -67. Previous worldwide comparisons of HPV-16 samples showed about 2% nucleotide diversity between isolates, which were subsequently termed variants. The distribution of divergent variants has been found to correlate frequently with the geographic origin and the ethnicity of the infected patients and led to the concept of unique African, European, Asian, and Native American HPV-16 variants. In the current study, we address the question of whether geography and ethnicity also correlate with sequence variations found for HPV-31, -35, -52, and -58. This was done by sequencing the long control region in samples derived from Europe, Asia, and Africa, and from immigrant populations in North and South America. We observed maximal divergence between any two variants within each of these four HPV types ranging from 1.8 to 3.6% based on nucleotide exchanges and, occasionally, on insertions and deletions. Similar to the case with HPV-16, these mutations are not random but indicate a relationship between the variants in form of phylogenetic trees. An interesting example is presented by a 16-bp insert in select variants of HPV-35, which appears to have given rise to additional variants by nucleotide exchanges within the insert. All trees showed distinct phylogenetic topologies, ranging from dichotomic branching in the case of HPV-31 to star phylogenies of the other three types. No clear similarities between these types or between these types and HPV-16 exist. While variant branches in some types were specific for Europe, Africa, or East Asia, none of the four trees reflected human evolution and spread to the extent illustrated by HPV-16. One possible explanation is that the rare HPV types that we studied spread and thereby diversified more slowly than the more abundant HPV-16 and may have established much of today's variant diversity already before the worldwide spread of humans 100,000 years ago. Most variants had prototypic amino acid sequences within the E6 oncoprotein and a segment of the L1 capsid protein. Some had one, two, or three amino acid substitutions in these regions, which might indicate biological and pathogenic diversity between the variants of each HPV type.
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.accessioned.none.fl_str_mv 2025-02-23T00:55:08Z
dc.date.available.none.fl_str_mv 2025-02-23T00:55:08Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson AL, Chung LP, Collins RJ, Zuna RE, Dunn ST, Chu TY, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard HU. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol. 2005 Nov;79(21):13630-40.
dc.identifier.issn.none.fl_str_mv 0022-538X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45143
dc.identifier.doi.none.fl_str_mv 10.1128/JVI.79.21.13630-13640.2005
dc.identifier.eissn.none.fl_str_mv 1098-5514
identifier_str_mv Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson AL, Chung LP, Collins RJ, Zuna RE, Dunn ST, Chu TY, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard HU. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol. 2005 Nov;79(21):13630-40.
0022-538X
10.1128/JVI.79.21.13630-13640.2005
1098-5514
url https://hdl.handle.net/10495/45143
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv J. Virol.
dc.relation.citationendpage.spa.fl_str_mv 13640
dc.relation.citationissue.spa.fl_str_mv 21
dc.relation.citationstartpage.spa.fl_str_mv 13630
dc.relation.citationvolume.spa.fl_str_mv 79
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Virology
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Society for Microbiology
dc.publisher.place.spa.fl_str_mv Washington, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/709bbb60-7772-47a1-8bfd-3409cdd19e79/download
https://bibliotecadigital.udea.edu.co/bitstreams/82e7d2ed-35fd-4d52-a243-577ed87f4128/download
https://bibliotecadigital.udea.edu.co/bitstreams/ec9c01a2-c2e0-43cf-80a5-1a15e05afce4/download
https://bibliotecadigital.udea.edu.co/bitstreams/933789b2-dc62-46c8-a562-ef75f969698f/download
https://bibliotecadigital.udea.edu.co/bitstreams/532f4206-9783-4216-8db0-7495ed1315e7/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
5eb65204009cefb861fa2534a18b6aa8
97dbd6157b2164efcf751e5ad6858c96
ba69ca577a1173d01f4426479c289aef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052272440573952
spelling Sánchez Vásquez, GloriaVilla, Luisa L.Prado, Jose C.Kalantari, MinaAllan, BruceWilliamson, Anna LisePing Chung, LapCollins, Robert J.Zuna, Rosemary E.Dunn, S. TerenceChu, Tang-YuanCubie, Heather A.Cuschieri, KateKnebel Doeberitz, Magnus vonCalleja Macias, Itzel E.Bosch, Francesc XavierMuñoz, NubiaUlrich Bernard, HansInfección y Cáncer2025-02-23T00:55:08Z2025-02-23T00:55:08Z2005Calleja-Macias IE, Villa LL, Prado JC, Kalantari M, Allan B, Williamson AL, Chung LP, Collins RJ, Zuna RE, Dunn ST, Chu TY, Cubie HA, Cuschieri K, von Knebel-Doeberitz M, Martins CR, Sanchez GI, Bosch FX, Munoz N, Bernard HU. Worldwide genomic diversity of the high-risk human papillomavirus types 31, 35, 52, and 58, four close relatives of human papillomavirus type 16. J Virol. 2005 Nov;79(21):13630-40.0022-538Xhttps://hdl.handle.net/10495/4514310.1128/JVI.79.21.13630-13640.20051098-5514ABSTRACT: Among the more than one hundred formally described human papillomavirus (HPV) types, 18 are referred to as high-risk HPV types due to their association with anogenital cancer. Despite pathogenic similarities, these types form three remotely related taxonomic groups. One of these groups is called HPV species 9 and is formed by HPV-16, the most common and best-studied type, together with HPV-31, -33, -35, -52, -58, and -67. Previous worldwide comparisons of HPV-16 samples showed about 2% nucleotide diversity between isolates, which were subsequently termed variants. The distribution of divergent variants has been found to correlate frequently with the geographic origin and the ethnicity of the infected patients and led to the concept of unique African, European, Asian, and Native American HPV-16 variants. In the current study, we address the question of whether geography and ethnicity also correlate with sequence variations found for HPV-31, -35, -52, and -58. This was done by sequencing the long control region in samples derived from Europe, Asia, and Africa, and from immigrant populations in North and South America. We observed maximal divergence between any two variants within each of these four HPV types ranging from 1.8 to 3.6% based on nucleotide exchanges and, occasionally, on insertions and deletions. Similar to the case with HPV-16, these mutations are not random but indicate a relationship between the variants in form of phylogenetic trees. An interesting example is presented by a 16-bp insert in select variants of HPV-35, which appears to have given rise to additional variants by nucleotide exchanges within the insert. All trees showed distinct phylogenetic topologies, ranging from dichotomic branching in the case of HPV-31 to star phylogenies of the other three types. No clear similarities between these types or between these types and HPV-16 exist. While variant branches in some types were specific for Europe, Africa, or East Asia, none of the four trees reflected human evolution and spread to the extent illustrated by HPV-16. One possible explanation is that the rare HPV types that we studied spread and thereby diversified more slowly than the more abundant HPV-16 and may have established much of today's variant diversity already before the worldwide spread of humans 100,000 years ago. Most variants had prototypic amino acid sequences within the E6 oncoprotein and a segment of the L1 capsid protein. Some had one, two, or three amino acid substitutions in these regions, which might indicate biological and pathogenic diversity between the variants of each HPV type.COL001232811 Páginasapplication/pdfengAmerican Society for MicrobiologyWashington, Estados Unidoshttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Worldwide Genomic Diversity of the High-Risk Human Papillomavirus Types 31, 35, 52, and 58, Four Close Relatives of Human Papillomavirus Type 16Artículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionGenes ViralesGenes ViralGenetic VariationVariación GenéticaDatos de Secuencia MolecularMolecular Sequence DataPapillomaviridaeInfecciones por PapillomavirusPapillomavirus InfectionsFilogeniaPhylogenyhttps://id.nlm.nih.gov/mesh/D005814https://id.nlm.nih.gov/mesh/D014644https://id.nlm.nih.gov/mesh/D008969https://id.nlm.nih.gov/mesh/D027383https://id.nlm.nih.gov/mesh/D030361https://id.nlm.nih.gov/mesh/D010802J. Virol.13640211363079Journal of VirologyPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/709bbb60-7772-47a1-8bfd-3409cdd19e79/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/82e7d2ed-35fd-4d52-a243-577ed87f4128/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdfSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdfArtículo de investigaciónapplication/pdf734721https://bibliotecadigital.udea.edu.co/bitstreams/ec9c01a2-c2e0-43cf-80a5-1a15e05afce4/download5eb65204009cefb861fa2534a18b6aa8MD51trueAnonymousREADTEXTSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.txtSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.txtExtracted texttext/plain47048https://bibliotecadigital.udea.edu.co/bitstreams/933789b2-dc62-46c8-a562-ef75f969698f/download97dbd6157b2164efcf751e5ad6858c96MD54falseAnonymousREADTHUMBNAILSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.jpgSanchezGloria_2005_Worldwide_Genomic_Diversity_Papillomavirus_Type_16.pdf.jpgGenerated Thumbnailimage/jpeg16766https://bibliotecadigital.udea.edu.co/bitstreams/532f4206-9783-4216-8db0-7495ed1315e7/downloadba69ca577a1173d01f4426479c289aefMD55falseAnonymousREAD10495/45143oai:bibliotecadigital.udea.edu.co:10495/451432025-03-26 19:40:53.097http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=