Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
ABSTRACT: Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order...
- Autores:
-
Carrette, Evelien
López Hincapié, José David
Van Roostd, Dirk
Meurs, Alfred
Vonck, Kristl
Boon, Paul
Vandenberghe, Stefaan
Van Mierlo, Pieter
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/7647
- Acceso en línea:
- http://hdl.handle.net/10495/7647
- Palabra clave:
- EEG
Source priors
Volumetric priors
Bayesian model selection
Interictal spikes
ECD
LORETA
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_a6c9db349c68afebf6850d489c2e432c |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/7647 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| title |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| spellingShingle |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization EEG Source priors Volumetric priors Bayesian model selection Interictal spikes ECD LORETA |
| title_short |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| title_full |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| title_fullStr |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| title_full_unstemmed |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| title_sort |
Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization |
| dc.creator.fl_str_mv |
Carrette, Evelien López Hincapié, José David Van Roostd, Dirk Meurs, Alfred Vonck, Kristl Boon, Paul Vandenberghe, Stefaan Van Mierlo, Pieter |
| dc.contributor.author.none.fl_str_mv |
Carrette, Evelien López Hincapié, José David Van Roostd, Dirk Meurs, Alfred Vonck, Kristl Boon, Paul Vandenberghe, Stefaan Van Mierlo, Pieter |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.none.fl_str_mv |
EEG Source priors Volumetric priors Bayesian model selection Interictal spikes ECD LORETA |
| topic |
EEG Source priors Volumetric priors Bayesian model selection Interictal spikes ECD LORETA |
| description |
ABSTRACT: Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources. |
| publishDate |
2016 |
| dc.date.issued.none.fl_str_mv |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2017-07-14T13:56:19Z |
| dc.date.available.none.fl_str_mv |
2017-07-14T13:56:19Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Strobbe, G., Carrette, E., López, J. D., Van Roostd, D., Meurs, A., Vonck, K., ... Van Mierlo, P. (2016). Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage: Clinical. 11, 252-263, doi: 10.1016/j.nicl.2016.01.017 |
| dc.identifier.issn.none.fl_str_mv |
2213-1582 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/7647 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.nicl.2016.01.017 |
| identifier_str_mv |
Strobbe, G., Carrette, E., López, J. D., Van Roostd, D., Meurs, A., Vonck, K., ... Van Mierlo, P. (2016). Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage: Clinical. 11, 252-263, doi: 10.1016/j.nicl.2016.01.017 2213-1582 10.1016/j.nicl.2016.01.017 |
| url |
http://hdl.handle.net/10495/7647 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
IJIEM |
| dc.relation.citationendpage.spa.fl_str_mv |
263 |
| dc.relation.citationstartpage.spa.fl_str_mv |
252 |
| dc.relation.citationvolume.spa.fl_str_mv |
11 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Neuroimage: Clinical |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ https://creativecommons.org/licenses/by-nc-sa/2.5/co/ Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
11 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
NeuroImage: Clinical Editorial Board |
| dc.publisher.place.spa.fl_str_mv |
Holnada |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/5610e6c1-a4e7-4304-8e8d-eefbbfa479bc/download https://bibliotecadigital.udea.edu.co/bitstreams/6b7c1e55-15d0-4eb9-a158-56f5bf6cc981/download https://bibliotecadigital.udea.edu.co/bitstreams/8fbdb4cd-1a8d-4bda-bfdf-5225e8115712/download https://bibliotecadigital.udea.edu.co/bitstreams/092ccfd3-1c84-42a5-811b-a224848ca88f/download https://bibliotecadigital.udea.edu.co/bitstreams/d36ee086-a57c-425c-bbca-3442274a9030/download https://bibliotecadigital.udea.edu.co/bitstreams/7de2a466-d1db-45ae-96fb-0ff4d2f95b80/download https://bibliotecadigital.udea.edu.co/bitstreams/4b3cdcee-9e44-4081-b3b3-58c8962b2671/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8dfa0e3c946703d2eacf990206ef12fb 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 001ec9656a7cdb79f87441a47ea581c5 cf7165d9102c289a640e84390b46e041 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052592309731328 |
| spelling |
Carrette, EvelienLópez Hincapié, José DavidVan Roostd, DirkMeurs, AlfredVonck, KristlBoon, PaulVandenberghe, StefaanVan Mierlo, PieterSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2017-07-14T13:56:19Z2017-07-14T13:56:19Z2016Strobbe, G., Carrette, E., López, J. D., Van Roostd, D., Meurs, A., Vonck, K., ... Van Mierlo, P. (2016). Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage: Clinical. 11, 252-263, doi: 10.1016/j.nicl.2016.01.0172213-1582http://hdl.handle.net/10495/764710.1016/j.nicl.2016.01.017ABSTRACT: Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources.11application/pdfengNeuroImage: Clinical Editorial BoardHolnadahttps://creativecommons.org/licenses/by-nc-sa/4.0/https://creativecommons.org/licenses/by-nc-sa/2.5/co/Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2EEGSource priorsVolumetric priorsBayesian model selectionInterictal spikesECDLORETAElectrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localizationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionIJIEM26325211Neuroimage: ClinicalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/5610e6c1-a4e7-4304-8e8d-eefbbfa479bc/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADORIGINALLopezJose_2016_ElectricalSourceImaging.pdfLopezJose_2016_ElectricalSourceImaging.pdfArtículo de investigaciónapplication/pdf6961305https://bibliotecadigital.udea.edu.co/bitstreams/6b7c1e55-15d0-4eb9-a158-56f5bf6cc981/download8dfa0e3c946703d2eacf990206ef12fbMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/8fbdb4cd-1a8d-4bda-bfdf-5225e8115712/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/092ccfd3-1c84-42a5-811b-a224848ca88f/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/d36ee086-a57c-425c-bbca-3442274a9030/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADTEXTLopezJose_2016_ElectricalSourceImaging.pdf.txtLopezJose_2016_ElectricalSourceImaging.pdf.txtExtracted texttext/plain85983https://bibliotecadigital.udea.edu.co/bitstreams/7de2a466-d1db-45ae-96fb-0ff4d2f95b80/download001ec9656a7cdb79f87441a47ea581c5MD56falseAnonymousREADTHUMBNAILLopezJose_2016_ElectricalSourceImaging.pdf.jpgLopezJose_2016_ElectricalSourceImaging.pdf.jpgGenerated Thumbnailimage/jpeg9455https://bibliotecadigital.udea.edu.co/bitstreams/4b3cdcee-9e44-4081-b3b3-58c8962b2671/downloadcf7165d9102c289a640e84390b46e041MD57falseAnonymousREAD10495/7647oai:bibliotecadigital.udea.edu.co:10495/76472025-03-27 00:46:04.257https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
