Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

ABSTRACT: Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order...

Full description

Autores:
Carrette, Evelien
López Hincapié, José David
Van Roostd, Dirk
Meurs, Alfred
Vonck, Kristl
Boon, Paul
Vandenberghe, Stefaan
Van Mierlo, Pieter
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/7647
Acceso en línea:
http://hdl.handle.net/10495/7647
Palabra clave:
EEG
Source priors
Volumetric priors
Bayesian model selection
Interictal spikes
ECD
LORETA
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_a6c9db349c68afebf6850d489c2e432c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/7647
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
title Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
spellingShingle Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
EEG
Source priors
Volumetric priors
Bayesian model selection
Interictal spikes
ECD
LORETA
title_short Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
title_full Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
title_fullStr Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
title_full_unstemmed Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
title_sort Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization
dc.creator.fl_str_mv Carrette, Evelien
López Hincapié, José David
Van Roostd, Dirk
Meurs, Alfred
Vonck, Kristl
Boon, Paul
Vandenberghe, Stefaan
Van Mierlo, Pieter
dc.contributor.author.none.fl_str_mv Carrette, Evelien
López Hincapié, José David
Van Roostd, Dirk
Meurs, Alfred
Vonck, Kristl
Boon, Paul
Vandenberghe, Stefaan
Van Mierlo, Pieter
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.none.fl_str_mv EEG
Source priors
Volumetric priors
Bayesian model selection
Interictal spikes
ECD
LORETA
topic EEG
Source priors
Volumetric priors
Bayesian model selection
Interictal spikes
ECD
LORETA
description ABSTRACT: Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-07-14T13:56:19Z
dc.date.available.none.fl_str_mv 2017-07-14T13:56:19Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Strobbe, G., Carrette, E., López, J. D., Van Roostd, D., Meurs, A., Vonck, K., ... Van Mierlo, P. (2016). Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage: Clinical. 11, 252-263, doi: 10.1016/j.nicl.2016.01.017
dc.identifier.issn.none.fl_str_mv 2213-1582
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/7647
dc.identifier.doi.none.fl_str_mv 10.1016/j.nicl.2016.01.017
identifier_str_mv Strobbe, G., Carrette, E., López, J. D., Van Roostd, D., Meurs, A., Vonck, K., ... Van Mierlo, P. (2016). Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage: Clinical. 11, 252-263, doi: 10.1016/j.nicl.2016.01.017
2213-1582
10.1016/j.nicl.2016.01.017
url http://hdl.handle.net/10495/7647
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv IJIEM
dc.relation.citationendpage.spa.fl_str_mv 263
dc.relation.citationstartpage.spa.fl_str_mv 252
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv Neuroimage: Clinical
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv NeuroImage: Clinical Editorial Board
dc.publisher.place.spa.fl_str_mv Holnada
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/5610e6c1-a4e7-4304-8e8d-eefbbfa479bc/download
https://bibliotecadigital.udea.edu.co/bitstreams/6b7c1e55-15d0-4eb9-a158-56f5bf6cc981/download
https://bibliotecadigital.udea.edu.co/bitstreams/8fbdb4cd-1a8d-4bda-bfdf-5225e8115712/download
https://bibliotecadigital.udea.edu.co/bitstreams/092ccfd3-1c84-42a5-811b-a224848ca88f/download
https://bibliotecadigital.udea.edu.co/bitstreams/d36ee086-a57c-425c-bbca-3442274a9030/download
https://bibliotecadigital.udea.edu.co/bitstreams/7de2a466-d1db-45ae-96fb-0ff4d2f95b80/download
https://bibliotecadigital.udea.edu.co/bitstreams/4b3cdcee-9e44-4081-b3b3-58c8962b2671/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8dfa0e3c946703d2eacf990206ef12fb
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
001ec9656a7cdb79f87441a47ea581c5
cf7165d9102c289a640e84390b46e041
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052592309731328
spelling Carrette, EvelienLópez Hincapié, José DavidVan Roostd, DirkMeurs, AlfredVonck, KristlBoon, PaulVandenberghe, StefaanVan Mierlo, PieterSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2017-07-14T13:56:19Z2017-07-14T13:56:19Z2016Strobbe, G., Carrette, E., López, J. D., Van Roostd, D., Meurs, A., Vonck, K., ... Van Mierlo, P. (2016). Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage: Clinical. 11, 252-263, doi: 10.1016/j.nicl.2016.01.0172213-1582http://hdl.handle.net/10495/764710.1016/j.nicl.2016.01.017ABSTRACT: Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in the same range as the LORETA and ECD techniques. We found distances smaller than 23 mm, with robust results for all the patients. For the finite difference models, we found that the distances to the resection border for the MSVP inversions of the full spike time epochs were generally smaller compared to the MSVP inversions of the time epochs before the spike peak. The results also suggest that the inversions using the finite difference models resulted in slightly smaller distances to the resection border compared to the spherical models. The results we obtained are promising because the MSVP approach allows to study the network of the estimated source-intensities and allows to characterize the spatial extent of the underlying sources.11application/pdfengNeuroImage: Clinical Editorial BoardHolnadahttps://creativecommons.org/licenses/by-nc-sa/4.0/https://creativecommons.org/licenses/by-nc-sa/2.5/co/Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2EEGSource priorsVolumetric priorsBayesian model selectionInterictal spikesECDLORETAElectrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localizationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionIJIEM26325211Neuroimage: ClinicalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/5610e6c1-a4e7-4304-8e8d-eefbbfa479bc/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADORIGINALLopezJose_2016_ElectricalSourceImaging.pdfLopezJose_2016_ElectricalSourceImaging.pdfArtículo de investigaciónapplication/pdf6961305https://bibliotecadigital.udea.edu.co/bitstreams/6b7c1e55-15d0-4eb9-a158-56f5bf6cc981/download8dfa0e3c946703d2eacf990206ef12fbMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/8fbdb4cd-1a8d-4bda-bfdf-5225e8115712/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/092ccfd3-1c84-42a5-811b-a224848ca88f/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/d36ee086-a57c-425c-bbca-3442274a9030/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADTEXTLopezJose_2016_ElectricalSourceImaging.pdf.txtLopezJose_2016_ElectricalSourceImaging.pdf.txtExtracted texttext/plain85983https://bibliotecadigital.udea.edu.co/bitstreams/7de2a466-d1db-45ae-96fb-0ff4d2f95b80/download001ec9656a7cdb79f87441a47ea581c5MD56falseAnonymousREADTHUMBNAILLopezJose_2016_ElectricalSourceImaging.pdf.jpgLopezJose_2016_ElectricalSourceImaging.pdf.jpgGenerated Thumbnailimage/jpeg9455https://bibliotecadigital.udea.edu.co/bitstreams/4b3cdcee-9e44-4081-b3b3-58c8962b2671/downloadcf7165d9102c289a640e84390b46e041MD57falseAnonymousREAD10495/7647oai:bibliotecadigital.udea.edu.co:10495/76472025-03-27 00:46:04.257https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=