Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia

ABSTRACT : Due to its geographic and hydro-meteorological conditions, Colombia has a long history of mass movement disasters. According to Gómez, García, and Aristizábal (2021), most landslides have been triggered by rainfall and have caused 34,248 deaths over 99 years (1921-2019). For this reason,...

Full description

Autores:
Gómez García, Derly Estefanny
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/37190
Acceso en línea:
https://hdl.handle.net/10495/37190
Palabra clave:
Desprendimientos de tierra
Landslides
Sistemas de prevención de desastres naturales
Natural disaster warning systems
Early Warning Systems
Rights
embargoedAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_a5958e79989e1b020eea85c2f94f2a6f
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/37190
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
title Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
spellingShingle Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
Desprendimientos de tierra
Landslides
Sistemas de prevención de desastres naturales
Natural disaster warning systems
Early Warning Systems
title_short Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
title_full Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
title_fullStr Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
title_full_unstemmed Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
title_sort Definition of rain-triggered landslide thresholds for early warning systems at different geographical scales in Colombia
dc.creator.fl_str_mv Gómez García, Derly Estefanny
dc.contributor.advisor.none.fl_str_mv García Aristizábal, Edwin Fabián
dc.contributor.author.none.fl_str_mv Gómez García, Derly Estefanny
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Infraestructura (GII)
dc.subject.lemb.none.fl_str_mv Desprendimientos de tierra
Landslides
Sistemas de prevención de desastres naturales
Natural disaster warning systems
topic Desprendimientos de tierra
Landslides
Sistemas de prevención de desastres naturales
Natural disaster warning systems
Early Warning Systems
dc.subject.proposal.spa.fl_str_mv Early Warning Systems
description ABSTRACT : Due to its geographic and hydro-meteorological conditions, Colombia has a long history of mass movement disasters. According to Gómez, García, and Aristizábal (2021), most landslides have been triggered by rainfall and have caused 34,248 deaths over 99 years (1921-2019). For this reason, the definition of the rainfall conditions that trigger landslides that could be implemented in early warning systems (EWS) is one of the prospective intervention actions that challenge Colombia’s disaster risk management policy. This thesis focuses on determining a tool that contributes to the solution of the country’s landslide problem and was developed in research stages presented in seven chapters in this document: The first chapter presents the objectives outline and research background. The second chapter focuses on the presentation of the target areas (different geographic scales), landslide conditioning factors and rainfall databases used for the study. The third chapter focuses on a spatial and temporal analysis of landslides in Colombia and the world, which shows a local and global overview of the problem. The fourth chapter conducts a rainfall-landslide analysis and evaluates the performance of the satellite rainfall estimations (SRES) in the study area. The fifth chapter defines landslide thresholds that can be used for landslide predictions, and the sixth chapter articulates the results obtained in previous chapters by presenting a methodology proposed as a forecasting component of Landslides Early Warning Systems (LEWS) and its validation. Finally, the seventh chapter presents general conclusions and recommendations for future work on the scope of this research. The methodological framework proposed is based on empirical and statistical landslide prediction approaches. It is focused on the same three geographic levels in which the risk management structure in Colombia are aligned: the Andean Region at the national level, the Antioquia department and the Medellín municipality at the regional and local levels, respectively. In addition, this methodology proposes to work on these scales in an articulated and non-articulated way, allowing them to be applied separately in each region or locality. Although it is focused on Antioquia and Medell´ın, it could be replicated in other areas of the country and the world with a complex topography and significant climatic heterogeneity. This methodology proposes working with ground-based rain information and satellite rain estimations (SREs: CHIRPSv2 and MSWEPv2.6) due to the scarcity of groundbased rain or its drawbacks in the recorded data. Moreover, the results indicated that CHIRPSv2 is the best-performing SRE for landslide prediction in the Colombian Andean Region. Finally, the methodological framework validation pointed out that this tool can be used as a forecasting component of LEWS, generating hazard warnings in the areas evaluated, with results at the pixel-resolution level when using CHIRPSv2 (0.05°) and at the station area when using ground-rainfall gauges data. Although overall, the results using groundbased rainfall as input data outperformed those using CHIRPSv2, CHIRPSv2 results were satisfactory, with accurate probabilities of occurrence in statistical models and high warnings using the empirical thresholds, and corroborating that the use of this SRE would yield good results in areas with a scarcity of ground-rainfall data.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-07T18:05:46Z
dc.date.available.none.fl_str_mv 2023-11-07T18:05:46Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/37190
url https://hdl.handle.net/10495/37190
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 200
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Doctorado en Ingeniería Ambiental
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/1427dfa2-a6bf-4f82-b7a0-ddc217986a0a/download
https://bibliotecadigital.udea.edu.co/bitstreams/c56d9e74-7deb-4045-8c06-169f2820539c/download
https://bibliotecadigital.udea.edu.co/bitstreams/bde58729-78fb-422d-88ad-8e6979e71a6e/download
https://bibliotecadigital.udea.edu.co/bitstreams/1156d125-3984-43e5-ad71-619ae408f87e/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
657bcabd4b1857424c09490f9cf243ea
11054f57366807c291e3d88db8a237c6
f4ef97acfd0a44afaf2157b7569b8d34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052247773872128
spelling García Aristizábal, Edwin FabiánGómez García, Derly EstefannyGrupo de Investigación en Infraestructura (GII)2023-11-07T18:05:46Z2023-11-07T18:05:46Z2023https://hdl.handle.net/10495/37190ABSTRACT : Due to its geographic and hydro-meteorological conditions, Colombia has a long history of mass movement disasters. According to Gómez, García, and Aristizábal (2021), most landslides have been triggered by rainfall and have caused 34,248 deaths over 99 years (1921-2019). For this reason, the definition of the rainfall conditions that trigger landslides that could be implemented in early warning systems (EWS) is one of the prospective intervention actions that challenge Colombia’s disaster risk management policy. This thesis focuses on determining a tool that contributes to the solution of the country’s landslide problem and was developed in research stages presented in seven chapters in this document: The first chapter presents the objectives outline and research background. The second chapter focuses on the presentation of the target areas (different geographic scales), landslide conditioning factors and rainfall databases used for the study. The third chapter focuses on a spatial and temporal analysis of landslides in Colombia and the world, which shows a local and global overview of the problem. The fourth chapter conducts a rainfall-landslide analysis and evaluates the performance of the satellite rainfall estimations (SRES) in the study area. The fifth chapter defines landslide thresholds that can be used for landslide predictions, and the sixth chapter articulates the results obtained in previous chapters by presenting a methodology proposed as a forecasting component of Landslides Early Warning Systems (LEWS) and its validation. Finally, the seventh chapter presents general conclusions and recommendations for future work on the scope of this research. The methodological framework proposed is based on empirical and statistical landslide prediction approaches. It is focused on the same three geographic levels in which the risk management structure in Colombia are aligned: the Andean Region at the national level, the Antioquia department and the Medellín municipality at the regional and local levels, respectively. In addition, this methodology proposes to work on these scales in an articulated and non-articulated way, allowing them to be applied separately in each region or locality. Although it is focused on Antioquia and Medell´ın, it could be replicated in other areas of the country and the world with a complex topography and significant climatic heterogeneity. This methodology proposes working with ground-based rain information and satellite rain estimations (SREs: CHIRPSv2 and MSWEPv2.6) due to the scarcity of groundbased rain or its drawbacks in the recorded data. Moreover, the results indicated that CHIRPSv2 is the best-performing SRE for landslide prediction in the Colombian Andean Region. Finally, the methodological framework validation pointed out that this tool can be used as a forecasting component of LEWS, generating hazard warnings in the areas evaluated, with results at the pixel-resolution level when using CHIRPSv2 (0.05°) and at the station area when using ground-rainfall gauges data. Although overall, the results using groundbased rainfall as input data outperformed those using CHIRPSv2, CHIRPSv2 results were satisfactory, with accurate probabilities of occurrence in statistical models and high warnings using the empirical thresholds, and corroborating that the use of this SRE would yield good results in areas with a scarcity of ground-rainfall data.COL0155367Tesis con Distinción: Cum LaudeDoctoradoDoctora en Ingeniería Ambiental200application/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Ambientalhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDefinition of rain-triggered landslide thresholds for early warning systems at different geographical scales in ColombiaTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftDesprendimientos de tierraLandslidesSistemas de prevención de desastres naturalesNatural disaster warning systemsEarly Warning SystemsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/1427dfa2-a6bf-4f82-b7a0-ddc217986a0a/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADORIGINALGomezDerly_2023_DeslizamientosDetonadosLluvia.pdfGomezDerly_2023_DeslizamientosDetonadosLluvia.pdfapplication/pdf282906937https://bibliotecadigital.udea.edu.co/bitstreams/c56d9e74-7deb-4045-8c06-169f2820539c/download657bcabd4b1857424c09490f9cf243eaMD55trueAnonymousREAD2025-12-31TEXTGomezDerly_2023_DeslizamientosDetonadosLluvia.pdf.txtGomezDerly_2023_DeslizamientosDetonadosLluvia.pdf.txtExtracted texttext/plain100644https://bibliotecadigital.udea.edu.co/bitstreams/bde58729-78fb-422d-88ad-8e6979e71a6e/download11054f57366807c291e3d88db8a237c6MD56falseAnonymousREAD2025-12-31THUMBNAILGomezDerly_2023_DeslizamientosDetonadosLluvia.pdf.jpgGomezDerly_2023_DeslizamientosDetonadosLluvia.pdf.jpgGenerated Thumbnailimage/jpeg6597https://bibliotecadigital.udea.edu.co/bitstreams/1156d125-3984-43e5-ad71-619ae408f87e/downloadf4ef97acfd0a44afaf2157b7569b8d34MD57falseAnonymousREAD2025-12-3110495/37190oai:bibliotecadigital.udea.edu.co:10495/371902025-03-26 19:18:50.422https://creativecommons.org/licenses/by-nc-sa/4.0/embargo2025-12-31https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=