Analítica de datos para predicciones en aprobaciones de tarjetas de crédito
RESUMEN : Uno de los objetivos de los bancos es ofrecer tarjetas de crédito a clientes que tengan un buen comportamiento de pago. Con esto en mente, el objetivo de este documento es indicar cómo a través de la información personal e historial de pagos, de los clientes existentes en el banco, se pued...
- Autores:
-
Rosales Guerrero, Santiago Felipe
Martínez Rendón, María Isabel
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35503
- Acceso en línea:
- https://hdl.handle.net/10495/35503
- Palabra clave:
- Tarjetas de crédito
Bancos
Aprendizaje automático (inteligencia artificial)
Comportamiento del consumidor
Modelos de clasificación
Desbalance de datos
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| Summary: | RESUMEN : Uno de los objetivos de los bancos es ofrecer tarjetas de crédito a clientes que tengan un buen comportamiento de pago. Con esto en mente, el objetivo de este documento es indicar cómo a través de la información personal e historial de pagos, de los clientes existentes en el banco, se puede catalogar a un posible cliente como apto o no apto para la aprobación de un cupo de tarjeta de crédito. Además de la adecuación y limpieza de los datos, es necesario implementar metodologías para hacer un tratamiento al desbalance de las etiquetas de la base de datos, ya que por lo general los bancos tienen muchos clientes con buen comportamiento en sus pagos y muy pocos que incumplen. Luego, se realiza una competencia de modelos teniendo como línea base la regresión logística, los modelos implementados fueron: Máquina de Soporte Vectorial, Árboles de Decisión, AdaBoost y Árboles Aleatorios. El mejor resultado se obtuvo con el método de sobremuestreo SMOTENC y con el modelo Árboles Aleatorios con un Accuracy de 98.8%, Balance accuracy score de 81.2% y Log Loss de 0.035. |
|---|
