Analítica de datos para predicciones en aprobaciones de tarjetas de crédito

RESUMEN : Uno de los objetivos de los bancos es ofrecer tarjetas de crédito a clientes que tengan un buen comportamiento de pago. Con esto en mente, el objetivo de este documento es indicar cómo a través de la información personal e historial de pagos, de los clientes existentes en el banco, se pued...

Full description

Autores:
Rosales Guerrero, Santiago Felipe
Martínez Rendón, María Isabel
Tipo de recurso:
Tesis
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35503
Acceso en línea:
https://hdl.handle.net/10495/35503
Palabra clave:
Tarjetas de crédito
Bancos
Aprendizaje automático (inteligencia artificial)
Comportamiento del consumidor
Modelos de clasificación
Desbalance de datos
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:RESUMEN : Uno de los objetivos de los bancos es ofrecer tarjetas de crédito a clientes que tengan un buen comportamiento de pago. Con esto en mente, el objetivo de este documento es indicar cómo a través de la información personal e historial de pagos, de los clientes existentes en el banco, se puede catalogar a un posible cliente como apto o no apto para la aprobación de un cupo de tarjeta de crédito. Además de la adecuación y limpieza de los datos, es necesario implementar metodologías para hacer un tratamiento al desbalance de las etiquetas de la base de datos, ya que por lo general los bancos tienen muchos clientes con buen comportamiento en sus pagos y muy pocos que incumplen. Luego, se realiza una competencia de modelos teniendo como línea base la regresión logística, los modelos implementados fueron: Máquina de Soporte Vectorial, Árboles de Decisión, AdaBoost y Árboles Aleatorios. El mejor resultado se obtuvo con el método de sobremuestreo SMOTENC y con el modelo Árboles Aleatorios con un Accuracy de 98.8%, Balance accuracy score de 81.2% y Log Loss de 0.035.