Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration

ABSTRACT: Among all biomaterials used for bone replacement, it is recognized that both commercially pure titanium (Ti c.p.) and Ti6Al4V alloy are the materials that show the best in vivo performance due to their excellent balance between mechanical, physical-chemical and biofunctional properties. Ho...

Full description

Autores:
Pavón Palacio, Juan José
Galvis Tangarife, Oscar Alonso
Castaño González, Juan Guillermo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2011
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35726
Acceso en línea:
https://hdl.handle.net/10495/35726
Palabra clave:
Prótesis e Implantes
Prostheses and Implants
Oseointegración
Osseointegration
Materiales Biocompatibles
Biocompatible Materials
Titanio
Titanium
Osteoblastos
Osteoblasts
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_a0cb667cbb8dc995d758b35e569b5e7c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35726
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
title Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
spellingShingle Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
Prótesis e Implantes
Prostheses and Implants
Oseointegración
Osseointegration
Materiales Biocompatibles
Biocompatible Materials
Titanio
Titanium
Osteoblastos
Osteoblasts
title_short Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
title_full Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
title_fullStr Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
title_full_unstemmed Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
title_sort Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration
dc.creator.fl_str_mv Pavón Palacio, Juan José
Galvis Tangarife, Oscar Alonso
Castaño González, Juan Guillermo
dc.contributor.author.none.fl_str_mv Pavón Palacio, Juan José
Galvis Tangarife, Oscar Alonso
Castaño González, Juan Guillermo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Biomateriales Avanzados y Medicina Regenerativa (BAMR)
dc.subject.decs.none.fl_str_mv Prótesis e Implantes
Prostheses and Implants
Oseointegración
Osseointegration
Materiales Biocompatibles
Biocompatible Materials
Titanio
Titanium
Osteoblastos
Osteoblasts
topic Prótesis e Implantes
Prostheses and Implants
Oseointegración
Osseointegration
Materiales Biocompatibles
Biocompatible Materials
Titanio
Titanium
Osteoblastos
Osteoblasts
description ABSTRACT: Among all biomaterials used for bone replacement, it is recognized that both commercially pure titanium (Ti c.p.) and Ti6Al4V alloy are the materials that show the best in vivo performance due to their excellent balance between mechanical, physical-chemical and biofunctional properties. However, one of its main drawbacks, which compromise the service reliability of the implants and its osteointegration capacity, is the thin film of fibrous tissue around the implant due to the bioinert behaviour of titanium. One of the alternatives more studied to improve the titanium osteointegration is the surface modification through the control of the roughness parameters within a specific range which is recognized that improve the osteoblasts adhesion. In this work is investigated the influence of different electrochemical processing conditions for surface modification of c.p. Ti, in their microstructural, morphological, topographical and mechanical properties, as well as in their biological behaviour. The electrochemical anodizing treatment was performed by using different electrolytes based on phosphoric acid (H3PO4), sulphuric acid (H2SO4) with a fluoride salt; and the Focused Ion Beam (FIB) technique, normally named as Nanolab, was used for the microstructural, chemical and morphological characterization, as well as the confocal laser microscopy technique which also served for roughness measurements. The mechanical response of the anodic layers was evaluated through the using of a scratch tester which showed the critical loads for the coating damages. The characterization results showed that both, concentrations and electrolyte species, clearly influenced the morphological and topographical features, as well as the chemical composition of the anodic layer. By using the FIB was possible to detect nanopores within both the surface and the bulk of the coating. Some of the conditions generated a very special coating morphology which promoted a better osteoblasts adhesion. Contrary to what it was a priory expected, all anodic coatings showed high critical loads for damages during scratch test, despite their high porosity, which could be related with some defects coalescence mechanism that allows dissipating the high stress concentration applied during the test.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011
dc.date.accessioned.none.fl_str_mv 2023-06-30T14:29:42Z
dc.date.available.none.fl_str_mv 2023-06-30T14:29:42Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Pavon Palacio, Juan & Galvis, Oscar & Echeverria, Félix & Castaño, Juan & Echeverry-Rendon, Monica & Robledo, Sara & Jiménez-Piqué, E. & Mestra, Alvaro. (2011). Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration. IFMBE Proceedings. 33. 10.1007/978-3-642-21198-0_45.
dc.identifier.issn.none.fl_str_mv 1680-0737
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35726
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-642-21198-0_45
identifier_str_mv Pavon Palacio, Juan & Galvis, Oscar & Echeverria, Félix & Castaño, Juan & Echeverry-Rendon, Monica & Robledo, Sara & Jiménez-Piqué, E. & Mestra, Alvaro. (2011). Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration. IFMBE Proceedings. 33. 10.1007/978-3-642-21198-0_45.
1680-0737
10.1007/978-3-642-21198-0_45
url https://hdl.handle.net/10495/35726
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv IFMBE Proc.
dc.relation.citationendpage.spa.fl_str_mv 179
dc.relation.citationstartpage.spa.fl_str_mv 176
dc.relation.citationvolume.spa.fl_str_mv 33
dc.relation.ispartofjournal.spa.fl_str_mv Ifmbe Proceedings
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 4
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer ; International Federation for Medical & Biological Engineering
dc.publisher.place.spa.fl_str_mv Huddinge, Suecia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/a37490da-7fcd-46ca-a26e-a72be81703d4/download
https://bibliotecadigital.udea.edu.co/bitstreams/08bb1ab1-64d8-42be-b6b1-d3c0d480a970/download
https://bibliotecadigital.udea.edu.co/bitstreams/43c976e3-4cc5-4517-99ea-29f94d059ec4/download
https://bibliotecadigital.udea.edu.co/bitstreams/ca672d42-c6ea-495f-bd5b-c525e7433b3e/download
bitstream.checksum.fl_str_mv 0b67c63ba497783df75c4f6a330e318d
8a4605be74aa9ea9d79846c1fba20a33
a94aec6dd037e8a7128f369cae72a5e5
4130f3570dd7554205ab6997c904aea7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052162703949824
spelling Pavón Palacio, Juan JoséGalvis Tangarife, Oscar AlonsoCastaño González, Juan GuillermoGrupo de Biomateriales Avanzados y Medicina Regenerativa (BAMR)2023-06-30T14:29:42Z2023-06-30T14:29:42Z2011Pavon Palacio, Juan & Galvis, Oscar & Echeverria, Félix & Castaño, Juan & Echeverry-Rendon, Monica & Robledo, Sara & Jiménez-Piqué, E. & Mestra, Alvaro. (2011). Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegration. IFMBE Proceedings. 33. 10.1007/978-3-642-21198-0_45.1680-0737https://hdl.handle.net/10495/3572610.1007/978-3-642-21198-0_45ABSTRACT: Among all biomaterials used for bone replacement, it is recognized that both commercially pure titanium (Ti c.p.) and Ti6Al4V alloy are the materials that show the best in vivo performance due to their excellent balance between mechanical, physical-chemical and biofunctional properties. However, one of its main drawbacks, which compromise the service reliability of the implants and its osteointegration capacity, is the thin film of fibrous tissue around the implant due to the bioinert behaviour of titanium. One of the alternatives more studied to improve the titanium osteointegration is the surface modification through the control of the roughness parameters within a specific range which is recognized that improve the osteoblasts adhesion. In this work is investigated the influence of different electrochemical processing conditions for surface modification of c.p. Ti, in their microstructural, morphological, topographical and mechanical properties, as well as in their biological behaviour. The electrochemical anodizing treatment was performed by using different electrolytes based on phosphoric acid (H3PO4), sulphuric acid (H2SO4) with a fluoride salt; and the Focused Ion Beam (FIB) technique, normally named as Nanolab, was used for the microstructural, chemical and morphological characterization, as well as the confocal laser microscopy technique which also served for roughness measurements. The mechanical response of the anodic layers was evaluated through the using of a scratch tester which showed the critical loads for the coating damages. The characterization results showed that both, concentrations and electrolyte species, clearly influenced the morphological and topographical features, as well as the chemical composition of the anodic layer. By using the FIB was possible to detect nanopores within both the surface and the bulk of the coating. Some of the conditions generated a very special coating morphology which promoted a better osteoblasts adhesion. Contrary to what it was a priory expected, all anodic coatings showed high critical loads for damages during scratch test, despite their high porosity, which could be related with some defects coalescence mechanism that allows dissipating the high stress concentration applied during the test.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASCOL01443994application/pdfengSpringer ; International Federation for Medical & Biological EngineeringHuddinge, Sueciahttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Anodic oxidation of titanium for implants and prosthesis: Processing, characterization and potential improvement of osteointegrationArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPrótesis e ImplantesProstheses and ImplantsOseointegraciónOsseointegrationMateriales BiocompatiblesBiocompatible MaterialsTitanioTitaniumOsteoblastosOsteoblastsIFMBE Proc.17917633Ifmbe ProceedingsRoR:048jthh02COL08-1-01-111545221209PublicationORIGINALPavonJuan_2011_AnodicOxidationTitanium.pdfPavonJuan_2011_AnodicOxidationTitanium.pdfArtículo de investigaciónapplication/pdf1887813https://bibliotecadigital.udea.edu.co/bitstreams/a37490da-7fcd-46ca-a26e-a72be81703d4/download0b67c63ba497783df75c4f6a330e318dMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/08bb1ab1-64d8-42be-b6b1-d3c0d480a970/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTPavonJuan_2011_AnodicOxidationTitanium.pdf.txtPavonJuan_2011_AnodicOxidationTitanium.pdf.txtExtracted texttext/plain17681https://bibliotecadigital.udea.edu.co/bitstreams/43c976e3-4cc5-4517-99ea-29f94d059ec4/downloada94aec6dd037e8a7128f369cae72a5e5MD55falseAnonymousREADTHUMBNAILPavonJuan_2011_AnodicOxidationTitanium.pdf.jpgPavonJuan_2011_AnodicOxidationTitanium.pdf.jpgGenerated Thumbnailimage/jpeg16834https://bibliotecadigital.udea.edu.co/bitstreams/ca672d42-c6ea-495f-bd5b-c525e7433b3e/download4130f3570dd7554205ab6997c904aea7MD56falseAnonymousREAD10495/35726oai:bibliotecadigital.udea.edu.co:10495/357262025-03-26 17:55:10.345https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=