A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement

ABSTRACT: Background Flash glucose monitoring systems like the FreeStyle Libre (FSL) sensor have gained popularity for monitoring glucose levels in people with diabetes mellitus. This sensor can be paired with an off-label converted real-time continuous glucose monitor (c-rtCGM) plus an ad hoc compu...

Full description

Autores:
Balcázar Morales, Norman
Arbeláez Córdoba, Natalia
Goez Mora, Jhon Edison
Rivadeneira Paz, Pablo Santiago
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/42272
Acceso en línea:
https://hdl.handle.net/10495/42272
Palabra clave:
Blood Glucose
Glucemia
Blood Glucose Self-Monitoring
Automonitorización de la Glucosa Sanguínea
Diabetes Mellitus, Experimental
Diabetes Mellitus Experimental
Diabetes Mellitus, Type 1
Diabetes Mellitus Tipo 1
Reproducibility of Results
Reproducibilidad de los Resultados
https://id.nlm.nih.gov/mesh/D001786
https://id.nlm.nih.gov/mesh/D015190
https://id.nlm.nih.gov/mesh/D003921
https://id.nlm.nih.gov/mesh/D003922
https://id.nlm.nih.gov/mesh/D015203
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_9fa8921819759e12b0692688533e213a
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/42272
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
title A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
spellingShingle A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
Blood Glucose
Glucemia
Blood Glucose Self-Monitoring
Automonitorización de la Glucosa Sanguínea
Diabetes Mellitus, Experimental
Diabetes Mellitus Experimental
Diabetes Mellitus, Type 1
Diabetes Mellitus Tipo 1
Reproducibility of Results
Reproducibilidad de los Resultados
https://id.nlm.nih.gov/mesh/D001786
https://id.nlm.nih.gov/mesh/D015190
https://id.nlm.nih.gov/mesh/D003921
https://id.nlm.nih.gov/mesh/D003922
https://id.nlm.nih.gov/mesh/D015203
title_short A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
title_full A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
title_fullStr A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
title_full_unstemmed A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
title_sort A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement
dc.creator.fl_str_mv Balcázar Morales, Norman
Arbeláez Córdoba, Natalia
Goez Mora, Jhon Edison
Rivadeneira Paz, Pablo Santiago
dc.contributor.author.none.fl_str_mv Balcázar Morales, Norman
Arbeláez Córdoba, Natalia
Goez Mora, Jhon Edison
Rivadeneira Paz, Pablo Santiago
dc.contributor.researchgroup.spa.fl_str_mv Genética Molecular (GENMOL)
dc.subject.decs.none.fl_str_mv Blood Glucose
Glucemia
Blood Glucose Self-Monitoring
Automonitorización de la Glucosa Sanguínea
Diabetes Mellitus, Experimental
Diabetes Mellitus Experimental
Diabetes Mellitus, Type 1
Diabetes Mellitus Tipo 1
Reproducibility of Results
Reproducibilidad de los Resultados
topic Blood Glucose
Glucemia
Blood Glucose Self-Monitoring
Automonitorización de la Glucosa Sanguínea
Diabetes Mellitus, Experimental
Diabetes Mellitus Experimental
Diabetes Mellitus, Type 1
Diabetes Mellitus Tipo 1
Reproducibility of Results
Reproducibilidad de los Resultados
https://id.nlm.nih.gov/mesh/D001786
https://id.nlm.nih.gov/mesh/D015190
https://id.nlm.nih.gov/mesh/D003921
https://id.nlm.nih.gov/mesh/D003922
https://id.nlm.nih.gov/mesh/D015203
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D001786
https://id.nlm.nih.gov/mesh/D015190
https://id.nlm.nih.gov/mesh/D003921
https://id.nlm.nih.gov/mesh/D003922
https://id.nlm.nih.gov/mesh/D015203
description ABSTRACT: Background Flash glucose monitoring systems like the FreeStyle Libre (FSL) sensor have gained popularity for monitoring glucose levels in people with diabetes mellitus. This sensor can be paired with an off-label converted real-time continuous glucose monitor (c-rtCGM) plus an ad hoc computer/smartphone interface for remote real-time monitoring of diabetic subjects, allowing for trend analysis and alarm generation. Objectives This work evaluates the accuracy and agreement between the FSL sensor and the developed c-rtCGM system. As real-time monitoring is the main feature, the system's connectivity was assessed at 5-min intervals during the trials. Methods One week of glucose data were collected from 16 type 1 diabetic rats using the FSL sensor and the c-rtCGM. Baseline blood samples were taken the first day before inducing type 1 diabetes with streptozotocin. Once confirmed diabetic rats, FSL and c-rtCGM, were implanted, and to improve data matching between the two monitoring devices, the c-rtCGM was calibrated to the FSL glucometer readings. A factorial design 2 × 3^3 and a second-order regression was used to find the base values of the linear model transformation of the raw data obtained from the sensor. Accuracy, agreement, and connectivity were assessed by median absolute relative difference (Median ARD), range averaging times, Parkes consensus error grid analysis (EGA), and Bland–Altman analysis with a non-parametric approach. Results Compared to the FSL sensor, the c-rtCGM had an overall Median ARD of 6.58%, with 93.06% of results in zone A when calibration was not carried out. When calibration frequency changed from every 50 h to 1 h, the overall Median ARD improved from 6.68% to 2.41%, respectively. The connectivity evaluation showed that 95% of data was successfully received every 5 min by the computer interface. Conclusions and clinical importance The results demonstrate the feasibility and reliability of real-time and remote subjects with diabetes monitoring using the developed c-rtCGM system. Performing calibrations relative to the FSL readings increases the accuracy of the data displayed at the interface.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-19T03:30:45Z
dc.date.available.none.fl_str_mv 2024-09-19T03:30:45Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Goez-Mora JE, Arbeláez-Córdoba N, Balcazar-Morales N, Rivadeneira PS. A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement. Biomed Eng Online. 2024 Feb 28;23(1):26. doi: 10.1186/s12938-024-01217-z.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/42272
dc.identifier.doi.none.fl_str_mv 10.1186/s12938-024-01217-z
dc.identifier.eissn.none.fl_str_mv 1475-925X
identifier_str_mv Goez-Mora JE, Arbeláez-Córdoba N, Balcazar-Morales N, Rivadeneira PS. A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement. Biomed Eng Online. 2024 Feb 28;23(1):26. doi: 10.1186/s12938-024-01217-z.
10.1186/s12938-024-01217-z
1475-925X
url https://hdl.handle.net/10495/42272
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Biomed. Eng. Online.
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 23
dc.relation.ispartofjournal.spa.fl_str_mv Biomedical Engineering Online
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv BMC (BioMed Central)
dc.publisher.place.spa.fl_str_mv Londres, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/3a178c52-af03-4b82-8528-5918265c9573/download
https://bibliotecadigital.udea.edu.co/bitstreams/b96b2246-e476-4372-a4e4-09e74c3a70cf/download
https://bibliotecadigital.udea.edu.co/bitstreams/641ee42e-3855-4cde-b67f-b8958a985a64/download
https://bibliotecadigital.udea.edu.co/bitstreams/a6167ae6-67eb-4f18-a7b0-22356871cb5f/download
https://bibliotecadigital.udea.edu.co/bitstreams/19a4bc20-3e5a-4533-bbe3-aa44f4561319/download
bitstream.checksum.fl_str_mv 9ec592939b4150e2275313dd6ece4ba7
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
9b2184fb6d2314c64efbac9cfc892919
253d09697037c1e425d63958c2959fa0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052222217977856
spelling Balcázar Morales, NormanArbeláez Córdoba, NataliaGoez Mora, Jhon EdisonRivadeneira Paz, Pablo SantiagoGenética Molecular (GENMOL)2024-09-19T03:30:45Z2024-09-19T03:30:45Z2024Goez-Mora JE, Arbeláez-Córdoba N, Balcazar-Morales N, Rivadeneira PS. A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement. Biomed Eng Online. 2024 Feb 28;23(1):26. doi: 10.1186/s12938-024-01217-z.https://hdl.handle.net/10495/4227210.1186/s12938-024-01217-z1475-925XABSTRACT: Background Flash glucose monitoring systems like the FreeStyle Libre (FSL) sensor have gained popularity for monitoring glucose levels in people with diabetes mellitus. This sensor can be paired with an off-label converted real-time continuous glucose monitor (c-rtCGM) plus an ad hoc computer/smartphone interface for remote real-time monitoring of diabetic subjects, allowing for trend analysis and alarm generation. Objectives This work evaluates the accuracy and agreement between the FSL sensor and the developed c-rtCGM system. As real-time monitoring is the main feature, the system's connectivity was assessed at 5-min intervals during the trials. Methods One week of glucose data were collected from 16 type 1 diabetic rats using the FSL sensor and the c-rtCGM. Baseline blood samples were taken the first day before inducing type 1 diabetes with streptozotocin. Once confirmed diabetic rats, FSL and c-rtCGM, were implanted, and to improve data matching between the two monitoring devices, the c-rtCGM was calibrated to the FSL glucometer readings. A factorial design 2 × 3^3 and a second-order regression was used to find the base values of the linear model transformation of the raw data obtained from the sensor. Accuracy, agreement, and connectivity were assessed by median absolute relative difference (Median ARD), range averaging times, Parkes consensus error grid analysis (EGA), and Bland–Altman analysis with a non-parametric approach. Results Compared to the FSL sensor, the c-rtCGM had an overall Median ARD of 6.58%, with 93.06% of results in zone A when calibration was not carried out. When calibration frequency changed from every 50 h to 1 h, the overall Median ARD improved from 6.68% to 2.41%, respectively. The connectivity evaluation showed that 95% of data was successfully received every 5 min by the computer interface. Conclusions and clinical importance The results demonstrate the feasibility and reliability of real-time and remote subjects with diabetes monitoring using the developed c-rtCGM system. Performing calibrations relative to the FSL readings increases the accuracy of the data displayed at the interface.Universidad Nacional de ColombiaCOL000672315 páginasapplication/pdfengBMC (BioMed Central)Londres, Inglaterrahttps://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurementArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionBlood GlucoseGlucemiaBlood Glucose Self-MonitoringAutomonitorización de la Glucosa SanguíneaDiabetes Mellitus, ExperimentalDiabetes Mellitus ExperimentalDiabetes Mellitus, Type 1Diabetes Mellitus Tipo 1Reproducibility of ResultsReproducibilidad de los Resultadoshttps://id.nlm.nih.gov/mesh/D001786https://id.nlm.nih.gov/mesh/D015190https://id.nlm.nih.gov/mesh/D003921https://id.nlm.nih.gov/mesh/D003922https://id.nlm.nih.gov/mesh/D015203Biomed. Eng. Online.151123Biomedical Engineering OnlineUNAL 57528RoR:059yx9a68PublicationORIGINALBalcazarNorman_2024_Concept_Human_diabetic.pdfBalcazarNorman_2024_Concept_Human_diabetic.pdfArtículo de investigaciónapplication/pdf1763076https://bibliotecadigital.udea.edu.co/bitstreams/3a178c52-af03-4b82-8528-5918265c9573/download9ec592939b4150e2275313dd6ece4ba7MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/b96b2246-e476-4372-a4e4-09e74c3a70cf/download1646d1f6b96dbbbc38035efc9239ac9cMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/641ee42e-3855-4cde-b67f-b8958a985a64/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTBalcazarNorman_2024_Concept_Human_diabetic.pdf.txtBalcazarNorman_2024_Concept_Human_diabetic.pdf.txtExtracted texttext/plain47997https://bibliotecadigital.udea.edu.co/bitstreams/a6167ae6-67eb-4f18-a7b0-22356871cb5f/download9b2184fb6d2314c64efbac9cfc892919MD56falseAnonymousREADTHUMBNAILBalcazarNorman_2024_Concept_Human_diabetic.pdf.jpgBalcazarNorman_2024_Concept_Human_diabetic.pdf.jpgGenerated Thumbnailimage/jpeg13704https://bibliotecadigital.udea.edu.co/bitstreams/19a4bc20-3e5a-4533-bbe3-aa44f4561319/download253d09697037c1e425d63958c2959fa0MD57falseAnonymousREAD10495/42272oai:bibliotecadigital.udea.edu.co:10495/422722025-03-26 18:52:04.242https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=