Neural Network Models for the Maximum Clique Problem

ABSTRACT: In this paper we describe two neural network based algorithms for the Maximum Clique Problem. The developed algorithms provide discrete and continuos descent dynamics respectively to approximate the solution of the quadratic 0-1 formulation of the Maximum Clique Problem. The discrete appro...

Full description

Autores:
López Reyes, Nancy
Cruz Rodés, Roberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2000
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34430
Acceso en línea:
https://hdl.handle.net/10495/34430
Palabra clave:
Heurística
Heuristics
Redes Neurales de la Computación
Neural Networks, Computer
Optimización combinatoria
Combinatorial optimization
Teoría de función geométrica
Geometric function theory
Problema del clique máximo
Problema cuadrático 0-1
https://id.nlm.nih.gov/mesh/D000066506
https://id.nlm.nih.gov/mesh/D016571
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:ABSTRACT: In this paper we describe two neural network based algorithms for the Maximum Clique Problem. The developed algorithms provide discrete and continuos descent dynamics respectively to approximate the solution of the quadratic 0-1 formulation of the Maximum Clique Problem. The discrete approach performed better, maintaining computational competitiveness to greedy randomized search procedures. Experimental results on test graphs of size up to 3361 vertices and 5506380 edges are presented.