The linear chain as an extremal value of VDB topological indices of polyomino chains
ABSTRACT: We give conditions on the numbers {ϕij} under which a vertex degree-based topological index T I of the form T I (G) = X 1≤i≤j≤n−1 mijϕij , where G is a graph with n vertices and mij is the number of ij-edges, has the linear chain as an extreme value among all polyomino chains. As a consequ...
- Autores:
-
Rada Rincón, Juan Pablo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26799
- Acceso en línea:
- http://hdl.handle.net/10495/26799
- Palabra clave:
- Extreme values
Valores extremos
Topological indices
Polyomino chains
Linear chains
http://aims.fao.org/aos/agrovoc/c_8e611af8
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| Summary: | ABSTRACT: We give conditions on the numbers {ϕij} under which a vertex degree-based topological index T I of the form T I (G) = X 1≤i≤j≤n−1 mijϕij , where G is a graph with n vertices and mij is the number of ij-edges, has the linear chain as an extreme value among all polyomino chains. As a consequence, we deduce that over the polyomino chains, the linear chain has the maximal value of the Randi´c index, the sum-connectivity index, the harmonic index and the geometric-arithmetic index and the minimal value of the first Zagreb index and the second Zagreb index. |
|---|
