Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating

El empleo de enzimas como herramienta catalítica ha cobrado creciente relevancia en el desarrollo de procesos más sostenibles y eficientes. En particular, las hidrolasas como la lipasa proveniente de Aspergillus oryzae han demostrado un alto potencial en aplicaciones que van desde la catálisis heter...

Full description

Autores:
Cárdenas Moreno, Danilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48008
Acceso en línea:
https://hdl.handle.net/10495/48008
Palabra clave:
Lipasa
Lipase
Estabilidad
Stability
Spin coating
Silanizante
https://id.nlm.nih.gov/mesh/D008049
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_9cdb412f0163acbae252f6f0989c360e
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/48008
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
title Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
spellingShingle Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
Lipasa
Lipase
Estabilidad
Stability
Spin coating
Silanizante
https://id.nlm.nih.gov/mesh/D008049
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
title_short Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
title_full Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
title_fullStr Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
title_full_unstemmed Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
title_sort Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coating
dc.creator.fl_str_mv Cárdenas Moreno, Danilo
dc.contributor.advisor.none.fl_str_mv Galeano Duque, Yessika
Mesa Cadavid, Mónica
dc.contributor.author.none.fl_str_mv Cárdenas Moreno, Danilo
dc.contributor.researchgroup.none.fl_str_mv Ciencia de los Materiales
dc.subject.decs.none.fl_str_mv Lipasa
Lipase
topic Lipasa
Lipase
Estabilidad
Stability
Spin coating
Silanizante
https://id.nlm.nih.gov/mesh/D008049
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.lemb.none.fl_str_mv Estabilidad
Stability
dc.subject.proposal.eng.fl_str_mv Spin coating
dc.subject.proposal.spa.fl_str_mv Silanizante
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D008049
dc.subject.ods.none.fl_str_mv ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
description El empleo de enzimas como herramienta catalítica ha cobrado creciente relevancia en el desarrollo de procesos más sostenibles y eficientes. En particular, las hidrolasas como la lipasa proveniente de Aspergillus oryzae han demostrado un alto potencial en aplicaciones que van desde la catálisis heterogénea en la industria química hasta el diseño de biosensores en el ámbito biomédico, gracias a su especificidad, eficiencia y capacidad de operar bajo condiciones suaves. Para ampliar su aplicabilidad, es fundamental implementar estrategias de inmovilización enzimática que mejoren su estabilidad estructural y funcional, así como su posibilidad de reutilización. No obstante, los métodos convencionales de inmovilización, como la adsorción física, la unión covalente directa o la encapsulación en matrices poliméricas, presentan diversas limitaciones. Entre ellas destacan los altos costos de implementación, problemas de difusión del sustrato hacia el sitio activo de la enzima, y una distribución irregular del biocatalizador sobre la superficie soporte, lo cual afecta negativamente la eficiencia catalítica. Frente a estas limitaciones, la técnica de "spin coating " ha emergido como una alternativa versátil para la deposición uniforme de enzimas sobre superficies sólidas. Este método permite aplicar películas delgadas de manera controlada, favoreciendo la inmovilización y la distribución homogénea de la enzima, además de facilitar su recuperación y reutilización. Cuando se combina con superficies funcionalizadas mediante agentes silanizantes, como el 3-glicidoxipropiltrimetoxisilano (GPTMS) o el 3-aminopropiltrietoxisilano (APTMS), se habilita la formación de enlaces covalentes o interacciones específicas que estabilizan la enzima sin comprometer su actividad. En el presente proyecto se planteó evaluar la interacción de lipasa con superficies de vidrio modificadas químicamente con GPTMS o APTMS, utilizando glutaraldehído como agente entrecruzante. La inmovilización se llevará a cabo mediante "spin coating ", con el objetivo de obtener una biopelícula delgada, estable y catalíticamente activa. Esta estrategia busca superar las limitaciones de los métodos tradicionales, promoviendo un sistema inmovilizado más eficiente, con mayor estabilidad operativa y potencial de aplicación en distintos entornos industriales y biomédicos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-29T16:13:30Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/48008
url https://hdl.handle.net/10495/48008
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349(8‐9), 1289-1307.
Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1-9.
Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: methods and applications. In Biocatalysis-from discovery to application (pp. 95-126). Berlin, Heidelberg: Springer Berlin Heidelberg.
Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and microbial technology, 40(6), 1451-1463.
Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial technology, 39(2), 235-251.
Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. nature, 409(6817), 258-268.
Andreescu, S., Njagi, J., & Ispas, C. (2008). Nanostructured materials for enzyme immobilization and biosensors. In The new frontiers of organic and composite nanotechnology (pp. 355-394). Elsevier.
Benavente, R., Pessela, B. C., Curiel, J. A., De las Rivas, B., Muñoz, R., Guisán, J. M., ... & Corzo, N. (2015). Improving properties of a novel β-galactosidase from Lactobacillus plantarum by covalent immobilization. Molecules, 20(5), 7874-7889.
Dorau, R., Jensen, P. R., & Solem, C. (2021). Purified lactases versus whole-cell lactases—the winner takes it all. Applied microbiology and biotechnology, 105(12), 4943-4955.
Juarez, B. B. (2013). Tecnología enzimática para la sacarificación de biomasas vegetales en solventes neotéricos= Enzyme technology for plant biomass saccharification in neoteric solvents (Doctoral dissertation, Universidad de Murcia).
Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. S. (2023). Enzyme immobilization technologies and industrial applications. ACS omega, 8(6), 5184-5196.
Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food hydrocolloids, 112, 106374.
Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food chemistry, 272, 494-506.
Espinoza-Espinoza, L. A., Muñoz-More, H. D., Nole-Jaramillo, J. M., Ruiz-Flores, L. A., Arana-Torres, N. M., Moreno-Quispe, L. A., & Valdiviezo-Marcelo, J. (2024). Microencapsulation of vitamins: A review and meta-analysis of coating materials, release and food fortification. Food Research International, 187, 114420.
Staniszewski, M., Kujawski, W., & Lewandowska, M. (2007). Ethanol production from whey in bioreactor with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product–Kinetic model predictions. Journal of Food Engineering, 82(4), 618-625.
Contreras, C. B. (2015). Funcionalización, micro/nanoestructuración de superficies esféricas y planas. Preparación de materiales híbridos (Doctoral dissertation, Universidad Nacional de Córdoba (UNC)).
D'Sa, R. A., Dickinson, P. J., Raj, J., Pierscionek, B. K., & Meenan, B. J. (2011). Inhibition of lens epithelial cell growth via immobilisation of hyaluronic acid on atmospheric pressure plasma modified polystyrene. Soft Matter, 7(2), 608-617.
Rahman, I. A., & Padavettan, V. (2012). Synthesis of silica nanoparticles by sol‐gel: size‐dependent properties, surface modification, and applications in silica‐polymer nanocomposites—a review. Journal of nanomaterials, 2012(1), 132424.
Sypabekova, M., Hagemann, A., Rho, D., & Kim, S. (2022). 3-Aminopropyltriethoxysilane (APTES) deposition methods on oxide surfaces in solution and vapor phases for biosensing applications. Biosensors, 13(1), 36.
Iler, R. K. (1979). The chemistry of silica, A Wiley-Interscience publication. Willey and Sons, New York, 665-676.
George, S. M. (2010). Atomic layer deposition: an overview. Chemical reviews, 110(1), 111-131.
Yanguas-Gil, A. (2016). Growth and transport in nanostructured materials: Reactive transport in PVD, CVD, and ALD. Springer.
Alf, M. E., Asatekin, A., Barr, M. C., Baxamusa, S. H., Chelawat, H., Ozaydin‐Ince, G., ... & Gleason, K. K. (2010). Chemical vapor deposition of conformal, functional, and responsive polymer films. Advanced Materials, 22(18), 1993-2027.
Shenton, M. J., & Stevens, G. C. (2001). Surface modification of polymer surfaces: atmosphericplasma versus vacuum plasma treatments. Journal of Physics D: Applied Physics, 34(18), 2761.
Mittal, K. L. (Ed.). (2004). Polymer Surface Modification: Relevance to Adhesion, Volume 3 (Vol. 3). CRC Press.
Friedrich, J. (2011). Mechanisms of plasma polymerization–reviewed from a chemical point of view. Plasma Processes and Polymers, 8(9), 783-802.
Fadeev, A. Y., & McCarthy, T. J. (1999). Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir, 15(11), 3759-3766.
Matisons, J. G. (2012). Silanes and siloxanes as coupling agents to glass: a perspective. Silicone Surface Science, 281-298.
Mendhe, A. C. (2023). Spin coating: Easy technique for thin films. In Simple Chemical Methods for Thin Film Deposition: Synthesis and Applications (pp. 387-424). Singapore: Springer Nature Singapore.
Tong, X., Trivedi, A., Jia, H., Zhang, M., & Wang, P. (2008). Enzymic thin film coatings for bioactive materials. Biotechnology progress, 24(3), 714-719.
Mustafa, H. A. M., & Jameel, D. A. (2021). Modeling and the main stages of spin coating process: A review. Journal of Applied Science and Technology Trends, 2(02), 119-123.
Bodade, A. B., Taiwade, M. A., & Chaudhari, G. N. (2017). Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor. Journal of Applied Pharmaceutical Research, 5(1), 30-39.
Pazol, J., Vázquez, A., & Nicolau, E. (2019). Characterization of non-covalent immobilized Candida antartica lipase b over PS-b-P4VP as a model bio-reactive porous interface. Colloids and Surfaces B: Biointerfaces, 183, 110418.
Brzozowski, A. M., Savage, H., Verma, C. S., Turkenburg, J. P., Lawson, D. M., Svendsen, A., & Patkar, S. (2000). Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry, 39(49), 15071-15082.
Ribeiro, B. D., Castro, A. M. D., Coelho, M. A. Z., & Freire, D. M. G. (2011). Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme research, 2011(1), 615803.
Pinto, M. C., Freire, D. M., & Pinto, J. C. (2014). Influence of the morphology of core-shell supports on the immobilization of lipase B from Candida antarctica. Molecules, 19(8), 12509-12530.
Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical society reviews, 42(15), 6223-6235.
Patel, N., Rai, D., Shivam, Shahane, S., & Mishra, U. (2019). Lipases: sources, production, purification, and applications. Recent patents on biotechnology, 13(1), 45-56.
Malar, C. G., Seenuvasan, M., & Kumar, K. S. (2019). Improvisation of diffusion coefficient in surface modified magnetite nanoparticles: A novel perspective. Materials Science and Engineering: C, 103, 109832.
Seenuvasan, M., Kumar, K. S., Kumar, A., & Parthiban, R. (2020). Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochemical engineering journal, 158, 107574.
Taylor, R. H., Fournier, S. M., Simons, B. L., Kaplan, H., & Hefford, M. A. (2005). Covalent protein immobilization on glass surfaces: Application to alkaline phosphatase. Journal of biotechnology, 118(3), 265-269.
Engelmann, C., Ekambaram, N., Johannsen, J., Fellechner, O., Waluga, T., Fieg, G., ... & Bubenheim, P. (2020). Enzyme immobilization on synthesized nanoporous silica particles and their application in a bi‐enzymatic reaction. ChemCatChem, 12(8), 2245-2252.
Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. Rsc Advances, 4(4), 1583-1600.
Holmes, M., Keeley, J., Hurd, K., Schmidt, H., & Hawkins, A. (2010). Optimized piranha etching process for SU8-based MEMS and MOEMS construction. Journal of Micromechanics and Microengineering, 20(11), 115008.
Master Organic Chemistry. (2015, 2 de febrero). Opening of epoxides with acid. Recuperado en julio de 2025, de https://www.masterorganicchemistry.com/2015/02/02/opening-of-epoxides-with-acid/
Hansen, T., Vermeeren, P., Haim, A., van Dorp, M. J., Codée, J. D., Bickelhaupt, F. M., & Hamlin, T. A. (2020). Regioselectivity of epoxide ring‐openings via SN2 reactions under basic and acidic conditions. European Journal of Organic Chemistry, 2020(25), 3822-3828.
Master Organic Chemistry. (2015, 10 de febrero). Epoxide ring opening with base. Recuperado en julio de 2025, de https://www.masterorganicchemistry.com/2015/02/10/opening-of-epoxide-with-base/
Mamedova, V. L., Khikmatova, G. Z., Korshin, D. E., Gavrilova, E. L., & Mamedov, V. A. O. (2022). Epoxides: methods of synthesis, reactivity, practical significance. Russian Chemical Reviews, 91(11).
Brochier Salon, M. C., & Belgacem, M. N. (2011). Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus, sulfur, and silicon and the related elements, 186(2), 240-254.
Casagrande, C. A., Jochem, L. F., & Repette, W. L. (2020). Analysis of the 3-Glycidoxypropyltrimethoxysilane (GPTMS) hydrolysis by infrared spectroscopy. Matéria (Rio de Janeiro), 25(03), e-12811.
Palafox-Gonzaleza, P., Rosas-Orta, L. R., Contreras-Lopez, D., Rocha-Jimenez, J., Gonzalez-Zarate, D., Pawar, T., ... & Vallejo-Montesinos, J. (2023). Study of the photodegradation of polypropylene: effect of the silane coupling agents as organosilicon coatings in TiO2 fillers, evaluation of the thermomechanical properties. Polymer Degradation and stability, 216, 110481.
Pustahija, L., Bandl, C., Alem, S. A. A., & Kern, W. (2024). Surface Functionalization of Activated Carbon: Coupling of 3-(Aminopropyl) trimethoxysilane and (3-Glycidyloxypropyl) trimethoxysilane. C, 10(4), 104.
Chemistry Steps. (s. f.). Reactions of epoxides under acidic and basic conditions. Recuperado en julio de 2025, de https://www.chemistrysteps.com/reactions-of-epoxides-under-acidic-and-basic-conditions/
Trino, L. D., Bronze-Uhle, E. S., George, A., Mathew, M. T., & Lisboa-Filho, P. N. (2018). Surface physicochemical and structural analysis of functionalized titanium dioxide films. Colloids and surfaces A: Physicochemical and engineering aspects, 546, 168-178.
Jin, W., Xing, Z., Song, Y., Huang, C., Xu, X., Ghose, S., & Li, Z. J. (2019, November). Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. In MAbs (Vol. 11, No. 8, pp. 1479-1491). Taylor & Francis.
Zhang, D. H., Yuwen, L. X., & Peng, L. J. (2013). Parameters affecting the performance of immobilized enzyme. Journal of chemistry, 2013(1), 946248.
Ossila Ltd. (s. f.). Spin coating: Complete guide to theory and techniques. Recuperado el 5 de junio de 2025, de https://www.ossila.com/pages/spin-coating
Applichem. (s. f.). Buffer reference center – pKa values of amino acids. Consultado en línea, de https://www.iscabiochemicals.com/page/32/amino-acid-pka-and-pki-values
Chen, B., Pernodet, N., Rafailovich, M. H., Bakhtina, A., & Gross, R. A. (2008). Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading. Langmuir, 24(23), 13457-13464.
Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790-802.
Margel, S., & Rembaum, A. (1980). Synthesis and characterization of poly (glutaraldehyde). A potential reagent for protein immobilization and cell separation. Macromolecules, 13(1), 19-24.
Boucher, R. M. G. (1972). Advances in sterilization techniques—state of the art and recent breakthroughs. American Journal of Health-System Pharmacy, 29(8), 661-672.
Boucher, R. M. G. (1974). Potentiated acid 1, 5 pentanedial solution—a new chemical sterilizing and disinfecting agent. American Journal of Health-System Pharmacy, 31(6), 546-557.
Chen, H., Zhang, Q., Dang, Y., & Shu, G. (2013). The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized β-galactosidase on chitosan bead. Adv. J. Food Sci. Technol, 5(7), 932-935.
Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790-802.
Multiple contributors. (2023). Glutaraldehyde. Disponible en https://www.researchgate.net/topic/Glutaraldehyde
Harley, W. (2023). A (3-Aminopropyl) triethoxysilane (APTES) and Glutaraldehyde Functionalized Cellulose Surface for Immunoassays.
Romero, G., Contreras, L. M., Aguirre Céspedes, C., Wilkesman, J., Clemente-Jiménez, J. M., Rodríguez-Vico, F., & Las Heras-Vázquez, F. J. (2023). Efficiency assessment between entrapment and covalent bond immobilization of mutant β-Xylosidase onto Chitosan support. Polymers, 15(15), 3170.
Yang, J., Sun, L., Guo, R., Yang, H., Feng, X., & Zhang, X. (2018). A Facile Route for Oriented Covalent Immobilization of Recombinant Protein A on Epoxy Agarose Gels: In Situ Generation of Heterofunctional Amino‐Epoxy Supports. ChemistrySelect, 3(37), 10320-10324.
Essa, H., Magner, E., Cooney, J., & Hodnett, B. K. (2007). Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic, 49(1-4), 61-68.
Salis, A., Medda, L., Cugia, F., & Monduzzi, M. (2016). Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials. Colloids and Surfaces B: Biointerfaces, 137, 77-90.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 89 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Química
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/5ae12172-3aac-4ad9-b7b6-2edc0b5990cb/download
https://bibliotecadigital.udea.edu.co/bitstreams/63181a84-bb8b-41ec-85f5-46695ea6b7c4/download
https://bibliotecadigital.udea.edu.co/bitstreams/bc1df1f9-909b-4eb6-9252-eb8da3650cb2/download
https://bibliotecadigital.udea.edu.co/bitstreams/efd09f2d-d5cc-44a1-b13a-43c3f783d243/download
https://bibliotecadigital.udea.edu.co/bitstreams/f3a9e6c3-257b-44b8-b6bd-5c7a40a50cfe/download
https://bibliotecadigital.udea.edu.co/bitstreams/c0564579-2e96-40fa-add3-2fddf9c9a65d/download
https://bibliotecadigital.udea.edu.co/bitstreams/e7f48df9-cbf2-4fd8-9f20-e419a263cd4d/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
2e79e19e9b9ef70e102ef2534d9b6a80
7f9499f8da41915222a73745b7b38a8a
4e6194a704156e3d0e4ba395e097db94
c2f1d83480670973bf85b8f451ad66a6
1a0a4be890f973d084c8972410de9b1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052587400298496
spelling Galeano Duque, YessikaMesa Cadavid, MónicaCárdenas Moreno, DaniloCiencia de los Materiales2025-10-29T16:13:30Z2025https://hdl.handle.net/10495/48008El empleo de enzimas como herramienta catalítica ha cobrado creciente relevancia en el desarrollo de procesos más sostenibles y eficientes. En particular, las hidrolasas como la lipasa proveniente de Aspergillus oryzae han demostrado un alto potencial en aplicaciones que van desde la catálisis heterogénea en la industria química hasta el diseño de biosensores en el ámbito biomédico, gracias a su especificidad, eficiencia y capacidad de operar bajo condiciones suaves. Para ampliar su aplicabilidad, es fundamental implementar estrategias de inmovilización enzimática que mejoren su estabilidad estructural y funcional, así como su posibilidad de reutilización. No obstante, los métodos convencionales de inmovilización, como la adsorción física, la unión covalente directa o la encapsulación en matrices poliméricas, presentan diversas limitaciones. Entre ellas destacan los altos costos de implementación, problemas de difusión del sustrato hacia el sitio activo de la enzima, y una distribución irregular del biocatalizador sobre la superficie soporte, lo cual afecta negativamente la eficiencia catalítica. Frente a estas limitaciones, la técnica de "spin coating " ha emergido como una alternativa versátil para la deposición uniforme de enzimas sobre superficies sólidas. Este método permite aplicar películas delgadas de manera controlada, favoreciendo la inmovilización y la distribución homogénea de la enzima, además de facilitar su recuperación y reutilización. Cuando se combina con superficies funcionalizadas mediante agentes silanizantes, como el 3-glicidoxipropiltrimetoxisilano (GPTMS) o el 3-aminopropiltrietoxisilano (APTMS), se habilita la formación de enlaces covalentes o interacciones específicas que estabilizan la enzima sin comprometer su actividad. En el presente proyecto se planteó evaluar la interacción de lipasa con superficies de vidrio modificadas químicamente con GPTMS o APTMS, utilizando glutaraldehído como agente entrecruzante. La inmovilización se llevará a cabo mediante "spin coating ", con el objetivo de obtener una biopelícula delgada, estable y catalíticamente activa. Esta estrategia busca superar las limitaciones de los métodos tradicionales, promoviendo un sistema inmovilizado más eficiente, con mayor estabilidad operativa y potencial de aplicación en distintos entornos industriales y biomédicos.The use of enzymes as catalytic tools has gained increasing relevance in the development of more sustainable and efficient processes. In particular, hydrolases such as lipase from Aspergillus oryzae have demonstrated high potential in applications ranging from heterogeneous catalysis in the chemical industry to the design of biosensors in the biomedical field, thanks to their specificity, efficiency, and ability to operate under mild conditions. To broaden their applicability, it is essential to implement enzyme immobilization strategies that enhance their structural and functional stability, as well as their potential for reuse. Nevertheless, conventional immobilization methods, such as physical adsorption, direct covalent bonding, or encapsulation in polymeric matrices, present various limitations. Among these are high implementation costs, substrate diffusion issues toward the enzyme’s active site, and an irregular distribution of the biocatalyst on the support surface, which negatively affects catalytic efficiency. In response to these limitations, the spin coating technique has emerged as a versatile alternative for the uniform deposition of enzymes onto solid surfaces. This method allows for the controlled application of thin films, promoting enzyme adhesion and homogeneous distribution, as well as facilitating recovery and reuse. When combined with surfaces functionalized using silanizing agents, such as 3-glycidoxypropyltrimethoxysilane (GPTMS) or 3-aminopropyltriethoxysilane (APTMS), it enables the formation of covalent bonds or specific interactions that stabilize the enzyme without compromising its activity. In the present project, the interaction of lipase with chemically modified glass surfaces using GPTMS or APTMS will be evaluated, employing glutaraldehyde as a crosslinking agent. Immobilization will be carried out via spin coating, with the objective of obtaining a thin, stable, and catalytically active biofilm. This strategy aims to overcome the limitations of traditional methods, promoting a more efficient immobilized system with greater operational stability and potential pplications in various industrial and biomedical settings.CiocatálisisCOL0002401PregradoQuímico89 páginasapplication/pdfspaUniversidad de AntioquiaQuímicaDepartamento de Ciencias BásicasMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Desarrollo de un método para la inmovilización de lipasas sobre superficies silíceas mediante spin coatingTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftSheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349(8‐9), 1289-1307.Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1-9.Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: methods and applications. In Biocatalysis-from discovery to application (pp. 95-126). Berlin, Heidelberg: Springer Berlin Heidelberg.Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and microbial technology, 40(6), 1451-1463.Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial technology, 39(2), 235-251.Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M., & Witholt, B. (2001). Industrial biocatalysis today and tomorrow. nature, 409(6817), 258-268.Andreescu, S., Njagi, J., & Ispas, C. (2008). Nanostructured materials for enzyme immobilization and biosensors. In The new frontiers of organic and composite nanotechnology (pp. 355-394). Elsevier.Benavente, R., Pessela, B. C., Curiel, J. A., De las Rivas, B., Muñoz, R., Guisán, J. M., ... & Corzo, N. (2015). Improving properties of a novel β-galactosidase from Lactobacillus plantarum by covalent immobilization. Molecules, 20(5), 7874-7889.Dorau, R., Jensen, P. R., & Solem, C. (2021). Purified lactases versus whole-cell lactases—the winner takes it all. Applied microbiology and biotechnology, 105(12), 4943-4955.Juarez, B. B. (2013). Tecnología enzimática para la sacarificación de biomasas vegetales en solventes neotéricos= Enzyme technology for plant biomass saccharification in neoteric solvents (Doctoral dissertation, Universidad de Murcia).Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H., & Azzazy, H. M. E. S. (2023). Enzyme immobilization technologies and industrial applications. ACS omega, 8(6), 5184-5196.Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food hydrocolloids, 112, 106374.Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food chemistry, 272, 494-506.Espinoza-Espinoza, L. A., Muñoz-More, H. D., Nole-Jaramillo, J. M., Ruiz-Flores, L. A., Arana-Torres, N. M., Moreno-Quispe, L. A., & Valdiviezo-Marcelo, J. (2024). Microencapsulation of vitamins: A review and meta-analysis of coating materials, release and food fortification. Food Research International, 187, 114420.Staniszewski, M., Kujawski, W., & Lewandowska, M. (2007). Ethanol production from whey in bioreactor with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product–Kinetic model predictions. Journal of Food Engineering, 82(4), 618-625.Contreras, C. B. (2015). Funcionalización, micro/nanoestructuración de superficies esféricas y planas. Preparación de materiales híbridos (Doctoral dissertation, Universidad Nacional de Córdoba (UNC)).D'Sa, R. A., Dickinson, P. J., Raj, J., Pierscionek, B. K., & Meenan, B. J. (2011). Inhibition of lens epithelial cell growth via immobilisation of hyaluronic acid on atmospheric pressure plasma modified polystyrene. Soft Matter, 7(2), 608-617.Rahman, I. A., & Padavettan, V. (2012). Synthesis of silica nanoparticles by sol‐gel: size‐dependent properties, surface modification, and applications in silica‐polymer nanocomposites—a review. Journal of nanomaterials, 2012(1), 132424.Sypabekova, M., Hagemann, A., Rho, D., & Kim, S. (2022). 3-Aminopropyltriethoxysilane (APTES) deposition methods on oxide surfaces in solution and vapor phases for biosensing applications. Biosensors, 13(1), 36.Iler, R. K. (1979). The chemistry of silica, A Wiley-Interscience publication. Willey and Sons, New York, 665-676.George, S. M. (2010). Atomic layer deposition: an overview. Chemical reviews, 110(1), 111-131.Yanguas-Gil, A. (2016). Growth and transport in nanostructured materials: Reactive transport in PVD, CVD, and ALD. Springer.Alf, M. E., Asatekin, A., Barr, M. C., Baxamusa, S. H., Chelawat, H., Ozaydin‐Ince, G., ... & Gleason, K. K. (2010). Chemical vapor deposition of conformal, functional, and responsive polymer films. Advanced Materials, 22(18), 1993-2027.Shenton, M. J., & Stevens, G. C. (2001). Surface modification of polymer surfaces: atmosphericplasma versus vacuum plasma treatments. Journal of Physics D: Applied Physics, 34(18), 2761.Mittal, K. L. (Ed.). (2004). Polymer Surface Modification: Relevance to Adhesion, Volume 3 (Vol. 3). CRC Press.Friedrich, J. (2011). Mechanisms of plasma polymerization–reviewed from a chemical point of view. Plasma Processes and Polymers, 8(9), 783-802.Fadeev, A. Y., & McCarthy, T. J. (1999). Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir, 15(11), 3759-3766.Matisons, J. G. (2012). Silanes and siloxanes as coupling agents to glass: a perspective. Silicone Surface Science, 281-298.Mendhe, A. C. (2023). Spin coating: Easy technique for thin films. In Simple Chemical Methods for Thin Film Deposition: Synthesis and Applications (pp. 387-424). Singapore: Springer Nature Singapore.Tong, X., Trivedi, A., Jia, H., Zhang, M., & Wang, P. (2008). Enzymic thin film coatings for bioactive materials. Biotechnology progress, 24(3), 714-719.Mustafa, H. A. M., & Jameel, D. A. (2021). Modeling and the main stages of spin coating process: A review. Journal of Applied Science and Technology Trends, 2(02), 119-123.Bodade, A. B., Taiwade, M. A., & Chaudhari, G. N. (2017). Bioelectrode based chitosan-nano copper oxide for application to lipase biosensor. Journal of Applied Pharmaceutical Research, 5(1), 30-39.Pazol, J., Vázquez, A., & Nicolau, E. (2019). Characterization of non-covalent immobilized Candida antartica lipase b over PS-b-P4VP as a model bio-reactive porous interface. Colloids and Surfaces B: Biointerfaces, 183, 110418.Brzozowski, A. M., Savage, H., Verma, C. S., Turkenburg, J. P., Lawson, D. M., Svendsen, A., & Patkar, S. (2000). Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase. Biochemistry, 39(49), 15071-15082.Ribeiro, B. D., Castro, A. M. D., Coelho, M. A. Z., & Freire, D. M. G. (2011). Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme research, 2011(1), 615803.Pinto, M. C., Freire, D. M., & Pinto, J. C. (2014). Influence of the morphology of core-shell supports on the immobilization of lipase B from Candida antarctica. Molecules, 19(8), 12509-12530.Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical society reviews, 42(15), 6223-6235.Patel, N., Rai, D., Shivam, Shahane, S., & Mishra, U. (2019). Lipases: sources, production, purification, and applications. Recent patents on biotechnology, 13(1), 45-56.Malar, C. G., Seenuvasan, M., & Kumar, K. S. (2019). Improvisation of diffusion coefficient in surface modified magnetite nanoparticles: A novel perspective. Materials Science and Engineering: C, 103, 109832.Seenuvasan, M., Kumar, K. S., Kumar, A., & Parthiban, R. (2020). Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochemical engineering journal, 158, 107574.Taylor, R. H., Fournier, S. M., Simons, B. L., Kaplan, H., & Hefford, M. A. (2005). Covalent protein immobilization on glass surfaces: Application to alkaline phosphatase. Journal of biotechnology, 118(3), 265-269.Engelmann, C., Ekambaram, N., Johannsen, J., Fellechner, O., Waluga, T., Fieg, G., ... & Bubenheim, P. (2020). Enzyme immobilization on synthesized nanoporous silica particles and their application in a bi‐enzymatic reaction. ChemCatChem, 12(8), 2245-2252.Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: A useful crosslinker and a versatile tool in enzyme immobilization. Rsc Advances, 4(4), 1583-1600.Holmes, M., Keeley, J., Hurd, K., Schmidt, H., & Hawkins, A. (2010). Optimized piranha etching process for SU8-based MEMS and MOEMS construction. Journal of Micromechanics and Microengineering, 20(11), 115008.Master Organic Chemistry. (2015, 2 de febrero). Opening of epoxides with acid. Recuperado en julio de 2025, de https://www.masterorganicchemistry.com/2015/02/02/opening-of-epoxides-with-acid/Hansen, T., Vermeeren, P., Haim, A., van Dorp, M. J., Codée, J. D., Bickelhaupt, F. M., & Hamlin, T. A. (2020). Regioselectivity of epoxide ring‐openings via SN2 reactions under basic and acidic conditions. European Journal of Organic Chemistry, 2020(25), 3822-3828.Master Organic Chemistry. (2015, 10 de febrero). Epoxide ring opening with base. Recuperado en julio de 2025, de https://www.masterorganicchemistry.com/2015/02/10/opening-of-epoxide-with-base/Mamedova, V. L., Khikmatova, G. Z., Korshin, D. E., Gavrilova, E. L., & Mamedov, V. A. O. (2022). Epoxides: methods of synthesis, reactivity, practical significance. Russian Chemical Reviews, 91(11).Brochier Salon, M. C., & Belgacem, M. N. (2011). Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus, sulfur, and silicon and the related elements, 186(2), 240-254.Casagrande, C. A., Jochem, L. F., & Repette, W. L. (2020). Analysis of the 3-Glycidoxypropyltrimethoxysilane (GPTMS) hydrolysis by infrared spectroscopy. Matéria (Rio de Janeiro), 25(03), e-12811.Palafox-Gonzaleza, P., Rosas-Orta, L. R., Contreras-Lopez, D., Rocha-Jimenez, J., Gonzalez-Zarate, D., Pawar, T., ... & Vallejo-Montesinos, J. (2023). Study of the photodegradation of polypropylene: effect of the silane coupling agents as organosilicon coatings in TiO2 fillers, evaluation of the thermomechanical properties. Polymer Degradation and stability, 216, 110481.Pustahija, L., Bandl, C., Alem, S. A. A., & Kern, W. (2024). Surface Functionalization of Activated Carbon: Coupling of 3-(Aminopropyl) trimethoxysilane and (3-Glycidyloxypropyl) trimethoxysilane. C, 10(4), 104.Chemistry Steps. (s. f.). Reactions of epoxides under acidic and basic conditions. Recuperado en julio de 2025, de https://www.chemistrysteps.com/reactions-of-epoxides-under-acidic-and-basic-conditions/Trino, L. D., Bronze-Uhle, E. S., George, A., Mathew, M. T., & Lisboa-Filho, P. N. (2018). Surface physicochemical and structural analysis of functionalized titanium dioxide films. Colloids and surfaces A: Physicochemical and engineering aspects, 546, 168-178.Jin, W., Xing, Z., Song, Y., Huang, C., Xu, X., Ghose, S., & Li, Z. J. (2019, November). Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. In MAbs (Vol. 11, No. 8, pp. 1479-1491). Taylor & Francis.Zhang, D. H., Yuwen, L. X., & Peng, L. J. (2013). Parameters affecting the performance of immobilized enzyme. Journal of chemistry, 2013(1), 946248.Ossila Ltd. (s. f.). Spin coating: Complete guide to theory and techniques. Recuperado el 5 de junio de 2025, de https://www.ossila.com/pages/spin-coatingApplichem. (s. f.). Buffer reference center – pKa values of amino acids. Consultado en línea, de https://www.iscabiochemicals.com/page/32/amino-acid-pka-and-pki-valuesChen, B., Pernodet, N., Rafailovich, M. H., Bakhtina, A., & Gross, R. A. (2008). Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading. Langmuir, 24(23), 13457-13464.Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790-802.Margel, S., & Rembaum, A. (1980). Synthesis and characterization of poly (glutaraldehyde). A potential reagent for protein immobilization and cell separation. Macromolecules, 13(1), 19-24.Boucher, R. M. G. (1972). Advances in sterilization techniques—state of the art and recent breakthroughs. American Journal of Health-System Pharmacy, 29(8), 661-672.Boucher, R. M. G. (1974). Potentiated acid 1, 5 pentanedial solution—a new chemical sterilizing and disinfecting agent. American Journal of Health-System Pharmacy, 31(6), 546-557.Chen, H., Zhang, Q., Dang, Y., & Shu, G. (2013). The effect of glutaraldehyde cross-linking on the enzyme activity of immobilized β-galactosidase on chitosan bead. Adv. J. Food Sci. Technol, 5(7), 932-935.Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790-802.Multiple contributors. (2023). Glutaraldehyde. Disponible en https://www.researchgate.net/topic/GlutaraldehydeHarley, W. (2023). A (3-Aminopropyl) triethoxysilane (APTES) and Glutaraldehyde Functionalized Cellulose Surface for Immunoassays.Romero, G., Contreras, L. M., Aguirre Céspedes, C., Wilkesman, J., Clemente-Jiménez, J. M., Rodríguez-Vico, F., & Las Heras-Vázquez, F. J. (2023). Efficiency assessment between entrapment and covalent bond immobilization of mutant β-Xylosidase onto Chitosan support. Polymers, 15(15), 3170.Yang, J., Sun, L., Guo, R., Yang, H., Feng, X., & Zhang, X. (2018). A Facile Route for Oriented Covalent Immobilization of Recombinant Protein A on Epoxy Agarose Gels: In Situ Generation of Heterofunctional Amino‐Epoxy Supports. ChemistrySelect, 3(37), 10320-10324.Essa, H., Magner, E., Cooney, J., & Hodnett, B. K. (2007). Influence of pH and ionic strength on the adsorption, leaching and activity of myoglobin immobilized onto ordered mesoporous silicates. Journal of Molecular Catalysis B: Enzymatic, 49(1-4), 61-68.Salis, A., Medda, L., Cugia, F., & Monduzzi, M. (2016). Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials. Colloids and Surfaces B: Biointerfaces, 137, 77-90.LipasaLipaseEstabilidadStabilitySpin coatingSilanizantehttps://id.nlm.nih.gov/mesh/D008049ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/5ae12172-3aac-4ad9-b7b6-2edc0b5990cb/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD51falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/63181a84-bb8b-41ec-85f5-46695ea6b7c4/download5643bfd9bcf29d560eeec56d584edaa9MD52falseAnonymousREADORIGINALCardenasDanilo_2025_Inmoviliacion_Supeficies_Lipasas.pdfCardenasDanilo_2025_Inmoviliacion_Supeficies_Lipasas.pdfTrabajo de grado de pregradoapplication/pdf22419167https://bibliotecadigital.udea.edu.co/bitstreams/bc1df1f9-909b-4eb6-9252-eb8da3650cb2/download2e79e19e9b9ef70e102ef2534d9b6a80MD53trueAnonymousREADCardenasDanilo_2025_Anexo A Calculos.zipCardenasDanilo_2025_Anexo A Calculos.zipAnexos trabajo de grado de pregradoapplication/zip155580https://bibliotecadigital.udea.edu.co/bitstreams/efd09f2d-d5cc-44a1-b13a-43c3f783d243/download7f9499f8da41915222a73745b7b38a8aMD54falseAnonymousREADCardenasDanilo_2025_Anexo B Fotos.zipCardenasDanilo_2025_Anexo B Fotos.zipAnexos trabajo de grado de pregradoapplication/zip34016968https://bibliotecadigital.udea.edu.co/bitstreams/f3a9e6c3-257b-44b8-b6bd-5c7a40a50cfe/download4e6194a704156e3d0e4ba395e097db94MD55falseAnonymousREADTEXTCardenasDanilo_2025_Inmoviliacion_Supeficies_Lipasas.pdf.txtCardenasDanilo_2025_Inmoviliacion_Supeficies_Lipasas.pdf.txtExtracted texttext/plain102495https://bibliotecadigital.udea.edu.co/bitstreams/c0564579-2e96-40fa-add3-2fddf9c9a65d/downloadc2f1d83480670973bf85b8f451ad66a6MD56falseAnonymousREADTHUMBNAILCardenasDanilo_2025_Inmoviliacion_Supeficies_Lipasas.pdf.jpgCardenasDanilo_2025_Inmoviliacion_Supeficies_Lipasas.pdf.jpgGenerated Thumbnailimage/jpeg6067https://bibliotecadigital.udea.edu.co/bitstreams/e7f48df9-cbf2-4fd8-9f20-e419a263cd4d/download1a0a4be890f973d084c8972410de9b1dMD57falseAnonymousREAD10495/48008oai:bibliotecadigital.udea.edu.co:10495/480082025-10-30 04:09:24.557http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=