Medical decision support system using weakly-labeled lung CT scans
ABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as w...
- Autores:
-
Mejía Velásquez, Marcia
Tavera Gallego, Fabby Maritza
Murillo González, Alejandro
González González, David
Jaramillo Duque, Laura
Galeano Ruiz, Carlos Andrés
Hernández Arango, Alejandro
Restrepo Rivera, David
Paniagua Castrillón, Juan Guillermo
Ariza Jiménez, Leandro
Garcés Echeverri, José Julián
Diaz León, Christian Andrés
Serna Higuita, Diana Lucia
Barrios Bustamante, Wayner
Arrázola Lara, Wiston
Mejía Mejía, Miguel Angel
Marín Ramírez, Daniela
Arango Mejía, Sebastián
Salinas Miranda, Emmanuel
Quintero Montoya, Olga Lucía
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39951
- Acceso en línea:
- https://hdl.handle.net/10495/39951
https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full
- Palabra clave:
- Lung
Pulmón
Lung diseases
Enfermedades pulmonares
COVID-19
Tomography
Tomografía
Machine learning
Aprendizaje automático
Supervised machine learning
Aprendizaje automático supervisado
Decision making
Toma de decisiones
Weak-labels
Image segmentation
https://id.nlm.nih.gov/mesh/D008168
https://id.nlm.nih.gov/mesh/D008171
https://id.nlm.nih.gov/mesh/D000086382
https://id.nlm.nih.gov/mesh/D014054
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D000069553
https://id.nlm.nih.gov/mesh/D003657
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_99fc4ba87f9c9bf118b77e16074acb28 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/39951 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Medical decision support system using weakly-labeled lung CT scans |
| dc.title.translated.spa.fl_str_mv |
Sistema de apoyo a la toma de decisiones médicas utilizando tomografías de pulmón débilmente etiquetadas |
| title |
Medical decision support system using weakly-labeled lung CT scans |
| spellingShingle |
Medical decision support system using weakly-labeled lung CT scans Lung Pulmón Lung diseases Enfermedades pulmonares COVID-19 Tomography Tomografía Machine learning Aprendizaje automático Supervised machine learning Aprendizaje automático supervisado Decision making Toma de decisiones Weak-labels Image segmentation https://id.nlm.nih.gov/mesh/D008168 https://id.nlm.nih.gov/mesh/D008171 https://id.nlm.nih.gov/mesh/D000086382 https://id.nlm.nih.gov/mesh/D014054 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D000069553 https://id.nlm.nih.gov/mesh/D003657 |
| title_short |
Medical decision support system using weakly-labeled lung CT scans |
| title_full |
Medical decision support system using weakly-labeled lung CT scans |
| title_fullStr |
Medical decision support system using weakly-labeled lung CT scans |
| title_full_unstemmed |
Medical decision support system using weakly-labeled lung CT scans |
| title_sort |
Medical decision support system using weakly-labeled lung CT scans |
| dc.creator.fl_str_mv |
Mejía Velásquez, Marcia Tavera Gallego, Fabby Maritza Murillo González, Alejandro González González, David Jaramillo Duque, Laura Galeano Ruiz, Carlos Andrés Hernández Arango, Alejandro Restrepo Rivera, David Paniagua Castrillón, Juan Guillermo Ariza Jiménez, Leandro Garcés Echeverri, José Julián Diaz León, Christian Andrés Serna Higuita, Diana Lucia Barrios Bustamante, Wayner Arrázola Lara, Wiston Mejía Mejía, Miguel Angel Marín Ramírez, Daniela Arango Mejía, Sebastián Salinas Miranda, Emmanuel Quintero Montoya, Olga Lucía |
| dc.contributor.author.none.fl_str_mv |
Mejía Velásquez, Marcia Tavera Gallego, Fabby Maritza Murillo González, Alejandro González González, David Jaramillo Duque, Laura Galeano Ruiz, Carlos Andrés Hernández Arango, Alejandro Restrepo Rivera, David Paniagua Castrillón, Juan Guillermo Ariza Jiménez, Leandro Garcés Echeverri, José Julián Diaz León, Christian Andrés Serna Higuita, Diana Lucia Barrios Bustamante, Wayner Arrázola Lara, Wiston Mejía Mejía, Miguel Angel Marín Ramírez, Daniela Arango Mejía, Sebastián Salinas Miranda, Emmanuel Quintero Montoya, Olga Lucía |
| dc.subject.decs.none.fl_str_mv |
Lung Pulmón Lung diseases Enfermedades pulmonares COVID-19 Tomography Tomografía Machine learning Aprendizaje automático Supervised machine learning Aprendizaje automático supervisado Decision making Toma de decisiones |
| topic |
Lung Pulmón Lung diseases Enfermedades pulmonares COVID-19 Tomography Tomografía Machine learning Aprendizaje automático Supervised machine learning Aprendizaje automático supervisado Decision making Toma de decisiones Weak-labels Image segmentation https://id.nlm.nih.gov/mesh/D008168 https://id.nlm.nih.gov/mesh/D008171 https://id.nlm.nih.gov/mesh/D000086382 https://id.nlm.nih.gov/mesh/D014054 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D000069553 https://id.nlm.nih.gov/mesh/D003657 |
| dc.subject.proposal.spa.fl_str_mv |
Weak-labels Image segmentation |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D008168 https://id.nlm.nih.gov/mesh/D008171 https://id.nlm.nih.gov/mesh/D000086382 https://id.nlm.nih.gov/mesh/D014054 https://id.nlm.nih.gov/mesh/D000069550 https://id.nlm.nih.gov/mesh/D000069553 https://id.nlm.nih.gov/mesh/D003657 |
| description |
ABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as well as lesion quantification of axial lung CT studies. Approach: A deep neural network architecture based on DenseNet is introduced for the classification of weakly-labeled, variable-sized (and possibly sparse) axial lung CT scans. The models are trained and tested on aggregated, publicly available data sets with over 10 categories. To further assess the models, a data set was collected from multiple medical institutions in Colombia, which includes healthy, COVID-19 and patients with other diseases. It is composed of 1,322 CT studies from a diverse set of CT machines and institutions that make over 550,000 slices. Each CT study was labeled based on a clinical test, and no per-slice annotation took place. This enabled a classification into Normal vs. Abnormal patients, and for those that were considered abnormal, an extra classification step into Abnormal (other diseases) vs. COVID-19. Additionally, the pipeline features a methodology to segment and quantify lesions of COVID-19 patients on the complete CT study, enabling easier localization and progress tracking. Moreover, multiple ablation studies were performed to appropriately assess the elements composing the classification pipeline. Results: The best performing lung CT study classification models achieved 0.83 accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88 precision. The ablation studies showed that using the complete CT study in the pipeline resulted in greater classification performance, restating that relevant COVID-19 patterns cannot be ignored towards the top and bottom of the lung volume. Discussion: The lung CT classification architecture introduced has shown that it can handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing the need for expert annotations at a per-slice level. Conclusions: This work presents a working methodology that can guide the development of decision support systems for clinical reasoning in future interventionist or prospective studies. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2024-06-12T16:31:33Z |
| dc.date.available.none.fl_str_mv |
2024-06-12T16:31:33Z |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_46ec |
| dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/COther |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/other |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_46ec |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/39951 |
| dc.identifier.doi.none.fl_str_mv |
10.3389/fmedt.2022.980735 |
| dc.identifier.url.spa.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full |
| url |
https://hdl.handle.net/10495/39951 https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full |
| identifier_str_mv |
10.3389/fmedt.2022.980735 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-sa/2.5/co/ Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
12 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina. Especialización en Radiología |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/657346d3-a5bd-437f-95f3-0fe21ebf0f35/download https://bibliotecadigital.udea.edu.co/bitstreams/293dc913-0d7c-42e2-bb86-34f5bbcdbde8/download https://bibliotecadigital.udea.edu.co/bitstreams/018cec7a-6c1f-47d8-a439-29c1ae04e0e1/download https://bibliotecadigital.udea.edu.co/bitstreams/f1b989a6-fcd2-453b-9b28-523c94e087f2/download |
| bitstream.checksum.fl_str_mv |
6954292353f07f3e9388adfd3a292ce9 8a4605be74aa9ea9d79846c1fba20a33 97fda20a2318a77514c581cba47d1a0b ca1b12cf74096a2df501edf447b260cb |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052544497811456 |
| spelling |
Mejía Velásquez, MarciaTavera Gallego, Fabby MaritzaMurillo González, AlejandroGonzález González, DavidJaramillo Duque, LauraGaleano Ruiz, Carlos AndrésHernández Arango, AlejandroRestrepo Rivera, DavidPaniagua Castrillón, Juan GuillermoAriza Jiménez, LeandroGarcés Echeverri, José JuliánDiaz León, Christian AndrésSerna Higuita, Diana LuciaBarrios Bustamante, WaynerArrázola Lara, WistonMejía Mejía, Miguel AngelMarín Ramírez, DanielaArango Mejía, SebastiánSalinas Miranda, EmmanuelQuintero Montoya, Olga Lucía2024-06-12T16:31:33Z2024-06-12T16:31:33Z2022https://hdl.handle.net/10495/3995110.3389/fmedt.2022.980735https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/fullABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as well as lesion quantification of axial lung CT studies. Approach: A deep neural network architecture based on DenseNet is introduced for the classification of weakly-labeled, variable-sized (and possibly sparse) axial lung CT scans. The models are trained and tested on aggregated, publicly available data sets with over 10 categories. To further assess the models, a data set was collected from multiple medical institutions in Colombia, which includes healthy, COVID-19 and patients with other diseases. It is composed of 1,322 CT studies from a diverse set of CT machines and institutions that make over 550,000 slices. Each CT study was labeled based on a clinical test, and no per-slice annotation took place. This enabled a classification into Normal vs. Abnormal patients, and for those that were considered abnormal, an extra classification step into Abnormal (other diseases) vs. COVID-19. Additionally, the pipeline features a methodology to segment and quantify lesions of COVID-19 patients on the complete CT study, enabling easier localization and progress tracking. Moreover, multiple ablation studies were performed to appropriately assess the elements composing the classification pipeline. Results: The best performing lung CT study classification models achieved 0.83 accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88 precision. The ablation studies showed that using the complete CT study in the pipeline resulted in greater classification performance, restating that relevant COVID-19 patterns cannot be ignored towards the top and bottom of the lung volume. Discussion: The lung CT classification architecture introduced has shown that it can handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing the need for expert annotations at a per-slice level. Conclusions: This work presents a working methodology that can guide the development of decision support systems for clinical reasoning in future interventionist or prospective studies.EspecializaciónEspecialista en Radiología12 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Medicina. Especialización en Radiologíahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://purl.org/coar/access_right/c_abf2Medical decision support system using weakly-labeled lung CT scansSistema de apoyo a la toma de decisiones médicas utilizando tomografías de pulmón débilmente etiquetadasTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/draftLungPulmónLung diseasesEnfermedades pulmonaresCOVID-19TomographyTomografíaMachine learningAprendizaje automáticoSupervised machine learningAprendizaje automático supervisadoDecision makingToma de decisionesWeak-labelsImage segmentationhttps://id.nlm.nih.gov/mesh/D008168https://id.nlm.nih.gov/mesh/D008171https://id.nlm.nih.gov/mesh/D000086382https://id.nlm.nih.gov/mesh/D014054https://id.nlm.nih.gov/mesh/D000069550https://id.nlm.nih.gov/mesh/D000069553https://id.nlm.nih.gov/mesh/D003657PublicationORIGINALMejiaMarcia_2022_MedicalDecisionSupport.pdfMejiaMarcia_2022_MedicalDecisionSupport.pdfTrabajo de grado de especializaciónapplication/pdf563808https://bibliotecadigital.udea.edu.co/bitstreams/657346d3-a5bd-437f-95f3-0fe21ebf0f35/download6954292353f07f3e9388adfd3a292ce9MD52trueAnonymousREAD2025-06-12LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/293dc913-0d7c-42e2-bb86-34f5bbcdbde8/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMejiaMarcia_2022_MedicalDecisionSupport.pdf.txtMejiaMarcia_2022_MedicalDecisionSupport.pdf.txtExtracted texttext/plain56463https://bibliotecadigital.udea.edu.co/bitstreams/018cec7a-6c1f-47d8-a439-29c1ae04e0e1/download97fda20a2318a77514c581cba47d1a0bMD54falseAnonymousREAD2025-06-12THUMBNAILMejiaMarcia_2022_MedicalDecisionSupport.pdf.jpgMejiaMarcia_2022_MedicalDecisionSupport.pdf.jpgGenerated Thumbnailimage/jpeg12546https://bibliotecadigital.udea.edu.co/bitstreams/f1b989a6-fcd2-453b-9b28-523c94e087f2/downloadca1b12cf74096a2df501edf447b260cbMD55falseAnonymousREAD2025-06-1210495/39951oai:bibliotecadigital.udea.edu.co:10495/399512025-03-27 00:05:52.961https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
