Medical decision support system using weakly-labeled lung CT scans

ABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as w...

Full description

Autores:
Mejía Velásquez, Marcia
Tavera Gallego, Fabby Maritza
Murillo González, Alejandro
González González, David
Jaramillo Duque, Laura
Galeano Ruiz, Carlos Andrés
Hernández Arango, Alejandro
Restrepo Rivera, David
Paniagua Castrillón, Juan Guillermo
Ariza Jiménez, Leandro
Garcés Echeverri, José Julián
Diaz León, Christian Andrés
Serna Higuita, Diana Lucia
Barrios Bustamante, Wayner
Arrázola Lara, Wiston
Mejía Mejía, Miguel Angel
Marín Ramírez, Daniela
Arango Mejía, Sebastián
Salinas Miranda, Emmanuel
Quintero Montoya, Olga Lucía
Tipo de recurso:
Tesis
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39951
Acceso en línea:
https://hdl.handle.net/10495/39951
https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full
Palabra clave:
Lung
Pulmón
Lung diseases
Enfermedades pulmonares
COVID-19
Tomography
Tomografía
Machine learning
Aprendizaje automático
Supervised machine learning
Aprendizaje automático supervisado
Decision making
Toma de decisiones
Weak-labels
Image segmentation
https://id.nlm.nih.gov/mesh/D008168
https://id.nlm.nih.gov/mesh/D008171
https://id.nlm.nih.gov/mesh/D000086382
https://id.nlm.nih.gov/mesh/D014054
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D000069553
https://id.nlm.nih.gov/mesh/D003657
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_99fc4ba87f9c9bf118b77e16074acb28
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39951
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Medical decision support system using weakly-labeled lung CT scans
dc.title.translated.spa.fl_str_mv Sistema de apoyo a la toma de decisiones médicas utilizando tomografías de pulmón débilmente etiquetadas
title Medical decision support system using weakly-labeled lung CT scans
spellingShingle Medical decision support system using weakly-labeled lung CT scans
Lung
Pulmón
Lung diseases
Enfermedades pulmonares
COVID-19
Tomography
Tomografía
Machine learning
Aprendizaje automático
Supervised machine learning
Aprendizaje automático supervisado
Decision making
Toma de decisiones
Weak-labels
Image segmentation
https://id.nlm.nih.gov/mesh/D008168
https://id.nlm.nih.gov/mesh/D008171
https://id.nlm.nih.gov/mesh/D000086382
https://id.nlm.nih.gov/mesh/D014054
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D000069553
https://id.nlm.nih.gov/mesh/D003657
title_short Medical decision support system using weakly-labeled lung CT scans
title_full Medical decision support system using weakly-labeled lung CT scans
title_fullStr Medical decision support system using weakly-labeled lung CT scans
title_full_unstemmed Medical decision support system using weakly-labeled lung CT scans
title_sort Medical decision support system using weakly-labeled lung CT scans
dc.creator.fl_str_mv Mejía Velásquez, Marcia
Tavera Gallego, Fabby Maritza
Murillo González, Alejandro
González González, David
Jaramillo Duque, Laura
Galeano Ruiz, Carlos Andrés
Hernández Arango, Alejandro
Restrepo Rivera, David
Paniagua Castrillón, Juan Guillermo
Ariza Jiménez, Leandro
Garcés Echeverri, José Julián
Diaz León, Christian Andrés
Serna Higuita, Diana Lucia
Barrios Bustamante, Wayner
Arrázola Lara, Wiston
Mejía Mejía, Miguel Angel
Marín Ramírez, Daniela
Arango Mejía, Sebastián
Salinas Miranda, Emmanuel
Quintero Montoya, Olga Lucía
dc.contributor.author.none.fl_str_mv Mejía Velásquez, Marcia
Tavera Gallego, Fabby Maritza
Murillo González, Alejandro
González González, David
Jaramillo Duque, Laura
Galeano Ruiz, Carlos Andrés
Hernández Arango, Alejandro
Restrepo Rivera, David
Paniagua Castrillón, Juan Guillermo
Ariza Jiménez, Leandro
Garcés Echeverri, José Julián
Diaz León, Christian Andrés
Serna Higuita, Diana Lucia
Barrios Bustamante, Wayner
Arrázola Lara, Wiston
Mejía Mejía, Miguel Angel
Marín Ramírez, Daniela
Arango Mejía, Sebastián
Salinas Miranda, Emmanuel
Quintero Montoya, Olga Lucía
dc.subject.decs.none.fl_str_mv Lung
Pulmón
Lung diseases
Enfermedades pulmonares
COVID-19
Tomography
Tomografía
Machine learning
Aprendizaje automático
Supervised machine learning
Aprendizaje automático supervisado
Decision making
Toma de decisiones
topic Lung
Pulmón
Lung diseases
Enfermedades pulmonares
COVID-19
Tomography
Tomografía
Machine learning
Aprendizaje automático
Supervised machine learning
Aprendizaje automático supervisado
Decision making
Toma de decisiones
Weak-labels
Image segmentation
https://id.nlm.nih.gov/mesh/D008168
https://id.nlm.nih.gov/mesh/D008171
https://id.nlm.nih.gov/mesh/D000086382
https://id.nlm.nih.gov/mesh/D014054
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D000069553
https://id.nlm.nih.gov/mesh/D003657
dc.subject.proposal.spa.fl_str_mv Weak-labels
Image segmentation
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D008168
https://id.nlm.nih.gov/mesh/D008171
https://id.nlm.nih.gov/mesh/D000086382
https://id.nlm.nih.gov/mesh/D014054
https://id.nlm.nih.gov/mesh/D000069550
https://id.nlm.nih.gov/mesh/D000069553
https://id.nlm.nih.gov/mesh/D003657
description ABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as well as lesion quantification of axial lung CT studies. Approach: A deep neural network architecture based on DenseNet is introduced for the classification of weakly-labeled, variable-sized (and possibly sparse) axial lung CT scans. The models are trained and tested on aggregated, publicly available data sets with over 10 categories. To further assess the models, a data set was collected from multiple medical institutions in Colombia, which includes healthy, COVID-19 and patients with other diseases. It is composed of 1,322 CT studies from a diverse set of CT machines and institutions that make over 550,000 slices. Each CT study was labeled based on a clinical test, and no per-slice annotation took place. This enabled a classification into Normal vs. Abnormal patients, and for those that were considered abnormal, an extra classification step into Abnormal (other diseases) vs. COVID-19. Additionally, the pipeline features a methodology to segment and quantify lesions of COVID-19 patients on the complete CT study, enabling easier localization and progress tracking. Moreover, multiple ablation studies were performed to appropriately assess the elements composing the classification pipeline. Results: The best performing lung CT study classification models achieved 0.83 accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88 precision. The ablation studies showed that using the complete CT study in the pipeline resulted in greater classification performance, restating that relevant COVID-19 patterns cannot be ignored towards the top and bottom of the lung volume. Discussion: The lung CT classification architecture introduced has shown that it can handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing the need for expert annotations at a per-slice level. Conclusions: This work presents a working methodology that can guide the development of decision support systems for clinical reasoning in future interventionist or prospective studies.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-06-12T16:31:33Z
dc.date.available.none.fl_str_mv 2024-06-12T16:31:33Z
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_46ec
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/COther
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/other
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_46ec
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39951
dc.identifier.doi.none.fl_str_mv 10.3389/fmedt.2022.980735
dc.identifier.url.spa.fl_str_mv https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full
url https://hdl.handle.net/10495/39951
https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/full
identifier_str_mv 10.3389/fmedt.2022.980735
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina. Especialización en Radiología
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/657346d3-a5bd-437f-95f3-0fe21ebf0f35/download
https://bibliotecadigital.udea.edu.co/bitstreams/293dc913-0d7c-42e2-bb86-34f5bbcdbde8/download
https://bibliotecadigital.udea.edu.co/bitstreams/018cec7a-6c1f-47d8-a439-29c1ae04e0e1/download
https://bibliotecadigital.udea.edu.co/bitstreams/f1b989a6-fcd2-453b-9b28-523c94e087f2/download
bitstream.checksum.fl_str_mv 6954292353f07f3e9388adfd3a292ce9
8a4605be74aa9ea9d79846c1fba20a33
97fda20a2318a77514c581cba47d1a0b
ca1b12cf74096a2df501edf447b260cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052544497811456
spelling Mejía Velásquez, MarciaTavera Gallego, Fabby MaritzaMurillo González, AlejandroGonzález González, DavidJaramillo Duque, LauraGaleano Ruiz, Carlos AndrésHernández Arango, AlejandroRestrepo Rivera, DavidPaniagua Castrillón, Juan GuillermoAriza Jiménez, LeandroGarcés Echeverri, José JuliánDiaz León, Christian AndrésSerna Higuita, Diana LuciaBarrios Bustamante, WaynerArrázola Lara, WistonMejía Mejía, Miguel AngelMarín Ramírez, DanielaArango Mejía, SebastiánSalinas Miranda, EmmanuelQuintero Montoya, Olga Lucía2024-06-12T16:31:33Z2024-06-12T16:31:33Z2022https://hdl.handle.net/10495/3995110.3389/fmedt.2022.980735https://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/fullABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as well as lesion quantification of axial lung CT studies. Approach: A deep neural network architecture based on DenseNet is introduced for the classification of weakly-labeled, variable-sized (and possibly sparse) axial lung CT scans. The models are trained and tested on aggregated, publicly available data sets with over 10 categories. To further assess the models, a data set was collected from multiple medical institutions in Colombia, which includes healthy, COVID-19 and patients with other diseases. It is composed of 1,322 CT studies from a diverse set of CT machines and institutions that make over 550,000 slices. Each CT study was labeled based on a clinical test, and no per-slice annotation took place. This enabled a classification into Normal vs. Abnormal patients, and for those that were considered abnormal, an extra classification step into Abnormal (other diseases) vs. COVID-19. Additionally, the pipeline features a methodology to segment and quantify lesions of COVID-19 patients on the complete CT study, enabling easier localization and progress tracking. Moreover, multiple ablation studies were performed to appropriately assess the elements composing the classification pipeline. Results: The best performing lung CT study classification models achieved 0.83 accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88 precision. The ablation studies showed that using the complete CT study in the pipeline resulted in greater classification performance, restating that relevant COVID-19 patterns cannot be ignored towards the top and bottom of the lung volume. Discussion: The lung CT classification architecture introduced has shown that it can handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing the need for expert annotations at a per-slice level. Conclusions: This work presents a working methodology that can guide the development of decision support systems for clinical reasoning in future interventionist or prospective studies.EspecializaciónEspecialista en Radiología12 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Medicina. Especialización en Radiologíahttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)http://purl.org/coar/access_right/c_abf2Medical decision support system using weakly-labeled lung CT scansSistema de apoyo a la toma de decisiones médicas utilizando tomografías de pulmón débilmente etiquetadasTesis/Trabajo de grado - Monografía - Especializaciónhttp://purl.org/coar/resource_type/c_46echttp://purl.org/redcol/resource_type/COtherhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/draftLungPulmónLung diseasesEnfermedades pulmonaresCOVID-19TomographyTomografíaMachine learningAprendizaje automáticoSupervised machine learningAprendizaje automático supervisadoDecision makingToma de decisionesWeak-labelsImage segmentationhttps://id.nlm.nih.gov/mesh/D008168https://id.nlm.nih.gov/mesh/D008171https://id.nlm.nih.gov/mesh/D000086382https://id.nlm.nih.gov/mesh/D014054https://id.nlm.nih.gov/mesh/D000069550https://id.nlm.nih.gov/mesh/D000069553https://id.nlm.nih.gov/mesh/D003657PublicationORIGINALMejiaMarcia_2022_MedicalDecisionSupport.pdfMejiaMarcia_2022_MedicalDecisionSupport.pdfTrabajo de grado de especializaciónapplication/pdf563808https://bibliotecadigital.udea.edu.co/bitstreams/657346d3-a5bd-437f-95f3-0fe21ebf0f35/download6954292353f07f3e9388adfd3a292ce9MD52trueAnonymousREAD2025-06-12LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/293dc913-0d7c-42e2-bb86-34f5bbcdbde8/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMejiaMarcia_2022_MedicalDecisionSupport.pdf.txtMejiaMarcia_2022_MedicalDecisionSupport.pdf.txtExtracted texttext/plain56463https://bibliotecadigital.udea.edu.co/bitstreams/018cec7a-6c1f-47d8-a439-29c1ae04e0e1/download97fda20a2318a77514c581cba47d1a0bMD54falseAnonymousREAD2025-06-12THUMBNAILMejiaMarcia_2022_MedicalDecisionSupport.pdf.jpgMejiaMarcia_2022_MedicalDecisionSupport.pdf.jpgGenerated Thumbnailimage/jpeg12546https://bibliotecadigital.udea.edu.co/bitstreams/f1b989a6-fcd2-453b-9b28-523c94e087f2/downloadca1b12cf74096a2df501edf447b260cbMD55falseAnonymousREAD2025-06-1210495/39951oai:bibliotecadigital.udea.edu.co:10495/399512025-03-27 00:05:52.961https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=