Distribution of the product of independent extended beta variables
ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 dis...
- Autores:
-
Nagar, Daya Krishna
Zarrazola Rivera, Edwin de Jesús
Sánchez Herrera, Luz Estela
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/26792
- Acceso en línea:
- http://hdl.handle.net/10495/26792
- Palabra clave:
- Funciones hipergeométricas
Hypergeometric functions
Beta distribution
Extended beta function
Gamma distribution
Gauss hypergeometric function
Inverted gamma distribution
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_99157abb3ac10313912b45ba0f3346ff |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/26792 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Distribution of the product of independent extended beta variables |
| title |
Distribution of the product of independent extended beta variables |
| spellingShingle |
Distribution of the product of independent extended beta variables Funciones hipergeométricas Hypergeometric functions Beta distribution Extended beta function Gamma distribution Gauss hypergeometric function Inverted gamma distribution |
| title_short |
Distribution of the product of independent extended beta variables |
| title_full |
Distribution of the product of independent extended beta variables |
| title_fullStr |
Distribution of the product of independent extended beta variables |
| title_full_unstemmed |
Distribution of the product of independent extended beta variables |
| title_sort |
Distribution of the product of independent extended beta variables |
| dc.creator.fl_str_mv |
Nagar, Daya Krishna Zarrazola Rivera, Edwin de Jesús Sánchez Herrera, Luz Estela |
| dc.contributor.author.none.fl_str_mv |
Nagar, Daya Krishna Zarrazola Rivera, Edwin de Jesús Sánchez Herrera, Luz Estela |
| dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Multivariado |
| dc.subject.lemb.none.fl_str_mv |
Funciones hipergeométricas Hypergeometric functions |
| topic |
Funciones hipergeométricas Hypergeometric functions Beta distribution Extended beta function Gamma distribution Gauss hypergeometric function Inverted gamma distribution |
| dc.subject.proposal.spa.fl_str_mv |
Beta distribution Extended beta function Gamma distribution Gauss hypergeometric function Inverted gamma distribution |
| description |
ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 distribution. We also consider several other products involving extended beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and inverted gamma variables. |
| publishDate |
2014 |
| dc.date.issued.none.fl_str_mv |
2014 |
| dc.date.accessioned.none.fl_str_mv |
2022-03-22T21:38:46Z |
| dc.date.available.none.fl_str_mv |
2022-03-22T21:38:46Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Nagar, D., Zarrazola, E., & Sánchez, L. (2014). Distribution of the product of independent extended beta variables. Applied Mathematical Sciences, 8(161), 8007-8019. http://dx.doi.org/10.12988/ams.2014.410814 |
| dc.identifier.issn.none.fl_str_mv |
1312-885X |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/26792 |
| dc.identifier.doi.none.fl_str_mv |
10.12988/ams.2014.410814 |
| dc.identifier.eissn.none.fl_str_mv |
1314-7552 |
| identifier_str_mv |
Nagar, D., Zarrazola, E., & Sánchez, L. (2014). Distribution of the product of independent extended beta variables. Applied Mathematical Sciences, 8(161), 8007-8019. http://dx.doi.org/10.12988/ams.2014.410814 1312-885X 10.12988/ams.2014.410814 1314-7552 |
| url |
http://hdl.handle.net/10495/26792 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Appl. Math. Sci. |
| dc.relation.citationendpage.spa.fl_str_mv |
8019 |
| dc.relation.citationissue.spa.fl_str_mv |
161 |
| dc.relation.citationstartpage.spa.fl_str_mv |
8007 |
| dc.relation.citationvolume.spa.fl_str_mv |
8 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Applied Mathematical Sciences |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Hikari |
| dc.publisher.place.spa.fl_str_mv |
Bulgaria |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/46c90832-9276-4e65-9592-0cbd67633e34/download https://bibliotecadigital.udea.edu.co/bitstreams/514fc54e-9a06-4b19-bd17-70086e91ef61/download https://bibliotecadigital.udea.edu.co/bitstreams/d8a5360c-b985-439d-9b1d-6d414feb51fb/download https://bibliotecadigital.udea.edu.co/bitstreams/7618d12f-c154-43cb-af72-dfebf452d1b7/download https://bibliotecadigital.udea.edu.co/bitstreams/9b6ebd36-dff9-475c-a037-d03bdcc64d94/download |
| bitstream.checksum.fl_str_mv |
760b0fffbc0c8179246fa4d363515e04 1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 e82098b2a75f4505587202b80df9c61c acae857fc76f7aed9329a3ebb55368e6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052539707916288 |
| spelling |
Nagar, Daya KrishnaZarrazola Rivera, Edwin de JesúsSánchez Herrera, Luz EstelaAnálisis Multivariado2022-03-22T21:38:46Z2022-03-22T21:38:46Z2014Nagar, D., Zarrazola, E., & Sánchez, L. (2014). Distribution of the product of independent extended beta variables. Applied Mathematical Sciences, 8(161), 8007-8019. http://dx.doi.org/10.12988/ams.2014.4108141312-885Xhttp://hdl.handle.net/10495/2679210.12988/ams.2014.4108141314-7552ABSTRACT: The extended beta type 1 distribution has the probability density function proportional to x α−1 (1−x) β−1 exp[−σ/x(1−x)], 0 < x < 1. In this article, we derive the probability density function of the product of two independent random variables each having an extended beta type 1 distribution. We also consider several other products involving extended beta type 1, beta type 1, beta type 2, beta type 3, Kummer-beta and inverted gamma variables.COL000053213application/pdfengHikariBulgariahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Distribution of the product of independent extended beta variablesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionFunciones hipergeométricasHypergeometric functionsBeta distributionExtended beta functionGamma distributionGauss hypergeometric functionInverted gamma distributionAppl. Math. Sci.801916180078Applied Mathematical SciencesPublicationORIGINALNagarDaya_2014_ProductIndependentBeta.pdfNagarDaya_2014_ProductIndependentBeta.pdfArtículo de investigaciónapplication/pdf216148https://bibliotecadigital.udea.edu.co/bitstreams/46c90832-9276-4e65-9592-0cbd67633e34/download760b0fffbc0c8179246fa4d363515e04MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/514fc54e-9a06-4b19-bd17-70086e91ef61/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/d8a5360c-b985-439d-9b1d-6d414feb51fb/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTNagarDaya_2014_ProductIndependentBeta.pdf.txtNagarDaya_2014_ProductIndependentBeta.pdf.txtExtracted texttext/plain23723https://bibliotecadigital.udea.edu.co/bitstreams/7618d12f-c154-43cb-af72-dfebf452d1b7/downloade82098b2a75f4505587202b80df9c61cMD54falseAnonymousREADTHUMBNAILNagarDaya_2014_ProductIndependentBeta.pdf.jpgNagarDaya_2014_ProductIndependentBeta.pdf.jpgGenerated Thumbnailimage/jpeg10912https://bibliotecadigital.udea.edu.co/bitstreams/9b6ebd36-dff9-475c-a037-d03bdcc64d94/downloadacae857fc76f7aed9329a3ebb55368e6MD55falseAnonymousREAD10495/26792oai:bibliotecadigital.udea.edu.co:10495/267922025-03-27 00:01:37.259http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
