Is every graph the extremal value of a vertex-degree-based topological index

Let Gn be the set of graphs with n non-isolated vertices. In this paper we identify vertex–degree–based topological indices over Gn with vectors in R h , the Euclidean space with h = (n−1)n 2 coordinates. In this setting, we give an interpretation of the extremal values of a topological index in ter...

Full description

Autores:
Rada Rincón, Juan Pablo
Bermudo Navarrete, Sergio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46399
Acceso en línea:
https://hdl.handle.net/10495/46399
Palabra clave:
Teoría de grafos
Graph theory
Topología algebraica
Algebraic topology
Árboles (Teoría de grafos)
Trees (Graph theory)
Estructura molecular
Molecular structure
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:Let Gn be the set of graphs with n non-isolated vertices. In this paper we identify vertex–degree–based topological indices over Gn with vectors in R h , the Euclidean space with h = (n−1)n 2 coordinates. In this setting, we give an interpretation of the extremal values of a topological index in terms of angles between vectors in R h . Then we consider the following problem: given a graph G0 ∈ Gn, does there exist a vertex–degree–based topological index that attains its extremal values in G0? The answer is affirmative. In order to do this, we introduce the support of the graph G0, the reference vector, and then construct vectors such that G0 is an extremal value.