Ability of non-linear mixed models to predict growth in laying hens
ABSTRACT: In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weigh...
- Autores:
-
Galeano Vasco, Luis Fernando
Cerón Muñoz, Mario Fernando
Narváez Solarte, William
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/43582
- Acceso en línea:
- https://hdl.handle.net/10495/43582
- Palabra clave:
- Aumento de Peso
Weight Gain
Análisis de Regresión
Regression Analysis
Pollos
Chickens
Aves de corral
Poultry
Modelo matemático
Mathematical models
http://aims.fao.org/aos/agrovoc/c_1540
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_16335
https://id.nlm.nih.gov/mesh/D015430
https://id.nlm.nih.gov/mesh/D012044
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc/4.0/
| id |
UDEA2_96f48af5cc679c272c19c12c4560a980 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/43582 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Ability of non-linear mixed models to predict growth in laying hens |
| title |
Ability of non-linear mixed models to predict growth in laying hens |
| spellingShingle |
Ability of non-linear mixed models to predict growth in laying hens Aumento de Peso Weight Gain Análisis de Regresión Regression Analysis Pollos Chickens Aves de corral Poultry Modelo matemático Mathematical models http://aims.fao.org/aos/agrovoc/c_1540 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_16335 https://id.nlm.nih.gov/mesh/D015430 https://id.nlm.nih.gov/mesh/D012044 |
| title_short |
Ability of non-linear mixed models to predict growth in laying hens |
| title_full |
Ability of non-linear mixed models to predict growth in laying hens |
| title_fullStr |
Ability of non-linear mixed models to predict growth in laying hens |
| title_full_unstemmed |
Ability of non-linear mixed models to predict growth in laying hens |
| title_sort |
Ability of non-linear mixed models to predict growth in laying hens |
| dc.creator.fl_str_mv |
Galeano Vasco, Luis Fernando Cerón Muñoz, Mario Fernando Narváez Solarte, William |
| dc.contributor.author.none.fl_str_mv |
Galeano Vasco, Luis Fernando Cerón Muñoz, Mario Fernando Narváez Solarte, William |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Agrociencias Biodiversidad y Territorio GAMMA |
| dc.subject.decs.none.fl_str_mv |
Aumento de Peso Weight Gain Análisis de Regresión Regression Analysis |
| topic |
Aumento de Peso Weight Gain Análisis de Regresión Regression Analysis Pollos Chickens Aves de corral Poultry Modelo matemático Mathematical models http://aims.fao.org/aos/agrovoc/c_1540 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_16335 https://id.nlm.nih.gov/mesh/D015430 https://id.nlm.nih.gov/mesh/D012044 |
| dc.subject.agrovoc.none.fl_str_mv |
Pollos Chickens Aves de corral Poultry Modelo matemático Mathematical models |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_1540 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_16335 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D015430 https://id.nlm.nih.gov/mesh/D012044 |
| description |
ABSTRACT: In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weighed weekly from day 20 after hatch until they were 553 days of age. All the nonlinear models used were transformed into mixed models by the inclusion of random parameters. Accuracy of the models was determined by the Akaike and Bayesian information criteria (AIC and BIC, respectively), and the correlation values. According to AIC, BIC, and correlation values, the best fit for modeling the growth curve of the birds was obtained with Gompertz, followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic models did not fit the data. The Gompertz nonlinear mixed model showed the best goodness of fit for the data set, and is considered the model of choice to describe and predict the growth curve of Lohmann LSL commercial layers at the production system of University of Antioquia. |
| publishDate |
2014 |
| dc.date.issued.none.fl_str_mv |
2014 |
| dc.date.accessioned.none.fl_str_mv |
2024-11-19T00:56:03Z |
| dc.date.available.none.fl_str_mv |
2024-11-19T00:56:03Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
1516-3598 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/43582 |
| dc.identifier.doi.none.fl_str_mv |
10.1590/S1516-35982014001100003 |
| dc.identifier.eissn.none.fl_str_mv |
1806-9290 |
| identifier_str_mv |
1516-3598 10.1590/S1516-35982014001100003 1806-9290 |
| url |
https://hdl.handle.net/10495/43582 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Rev. Bras. Zootec. |
| dc.relation.citationendpage.spa.fl_str_mv |
578 |
| dc.relation.citationissue.spa.fl_str_mv |
11 |
| dc.relation.citationstartpage.spa.fl_str_mv |
573 |
| dc.relation.citationvolume.spa.fl_str_mv |
43 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Brasileira de Zootecnia |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
6 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Sociedade Brasileira de Zootecnia |
| dc.publisher.place.spa.fl_str_mv |
Viçosa, Brasil |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/e58dc50a-c6f1-46f0-96dd-19ae51253cf2/download https://bibliotecadigital.udea.edu.co/bitstreams/139372ff-ca6e-46f5-89f4-d3b867dd740a/download https://bibliotecadigital.udea.edu.co/bitstreams/fb507fef-2029-4cde-ace2-e8b96167ab9b/download https://bibliotecadigital.udea.edu.co/bitstreams/aa37b185-42d9-49aa-be76-d804274449c8/download https://bibliotecadigital.udea.edu.co/bitstreams/df7accbb-26a0-40e2-99fa-0553996bbd9f/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 194ee788d226549e1a5f5aef5717a0b7 f10b522e8b2852cd528fac1c2ace2fac 13714c4170ef68314dc081149789267c |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052170443489280 |
| spelling |
Galeano Vasco, Luis FernandoCerón Muñoz, Mario FernandoNarváez Solarte, WilliamGrupo de Investigación en Agrociencias Biodiversidad y Territorio GAMMA2024-11-19T00:56:03Z2024-11-19T00:56:03Z20141516-3598https://hdl.handle.net/10495/4358210.1590/S1516-359820140011000031806-9290ABSTRACT: In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weighed weekly from day 20 after hatch until they were 553 days of age. All the nonlinear models used were transformed into mixed models by the inclusion of random parameters. Accuracy of the models was determined by the Akaike and Bayesian information criteria (AIC and BIC, respectively), and the correlation values. According to AIC, BIC, and correlation values, the best fit for modeling the growth curve of the birds was obtained with Gompertz, followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic models did not fit the data. The Gompertz nonlinear mixed model showed the best goodness of fit for the data set, and is considered the model of choice to describe and predict the growth curve of Lohmann LSL commercial layers at the production system of University of Antioquia.Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIColombia. Ministerio de Ciencia, Tecnología e Innovación - MiniCienciasCOL00067796 páginasapplication/pdfengSociedade Brasileira de ZootecniaViçosa, Brasilhttps://creativecommons.org/licenses/by-nc/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ability of non-linear mixed models to predict growth in laying hensArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAumento de PesoWeight GainAnálisis de RegresiónRegression AnalysisPollosChickensAves de corralPoultryModelo matemáticoMathematical modelshttp://aims.fao.org/aos/agrovoc/c_1540http://aims.fao.org/aos/agrovoc/c_24199http://aims.fao.org/aos/agrovoc/c_16335https://id.nlm.nih.gov/mesh/D015430https://id.nlm.nih.gov/mesh/D012044Rev. Bras. Zootec.5781157343Revista Brasileira de ZootecniaDiseño y validación de sistemas de apoyo a la toma de decisiones en granjas avícolas productoras de huevo comercialCODI 2014/ E01808MinCiencias 528RoR:03bp5hc83RoR:03fd5ne08PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/e58dc50a-c6f1-46f0-96dd-19ae51253cf2/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/139372ff-ca6e-46f5-89f4-d3b867dd740a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALGaleanoLuis_2014_AbilityNon-linearModels.pdfGaleanoLuis_2014_AbilityNon-linearModels.pdfArtículo de investigaciónapplication/pdf1251991https://bibliotecadigital.udea.edu.co/bitstreams/fb507fef-2029-4cde-ace2-e8b96167ab9b/download194ee788d226549e1a5f5aef5717a0b7MD51trueAnonymousREADTEXTGaleanoLuis_2014_AbilityNon-linearModels.pdf.txtGaleanoLuis_2014_AbilityNon-linearModels.pdf.txtExtracted texttext/plain23545https://bibliotecadigital.udea.edu.co/bitstreams/aa37b185-42d9-49aa-be76-d804274449c8/downloadf10b522e8b2852cd528fac1c2ace2facMD56falseAnonymousREADTHUMBNAILGaleanoLuis_2014_AbilityNon-linearModels.pdf.jpgGaleanoLuis_2014_AbilityNon-linearModels.pdf.jpgGenerated Thumbnailimage/jpeg15349https://bibliotecadigital.udea.edu.co/bitstreams/df7accbb-26a0-40e2-99fa-0553996bbd9f/download13714c4170ef68314dc081149789267cMD57falseAnonymousREAD10495/43582oai:bibliotecadigital.udea.edu.co:10495/435822025-03-26 18:02:40.126https://creativecommons.org/licenses/by-nc/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
