System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock

ABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploit...

Full description

Autores:
Carranza Saavedra, Darwin
Sánchez Henao, Claudia Patricia
Zapata Montoya, José Edgar
Torres Bacete, Jesús
Blázquez, Blas
Nogales, Juan
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39530
Acceso en línea:
https://hdl.handle.net/10495/39530
Palabra clave:
Valina
Valine
Biotecnología
Biotechnology
Tecnología farmacéutica
Pharmaceutical technology
Microorganismos
Micro-organisms
Bioeconomía
Bioeconomy
Subproductos de la leche
Milk by-products
http://aims.fao.org/aos/agrovoc/c_bcba0163
http://aims.fao.org/aos/agrovoc/c_4827
https://id.nlm.nih.gov/mesh/D014633
https://id.nlm.nih.gov/mesh/D001709
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_9538627577bdd9fb18de930f7a5a5af3
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39530
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
title System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
spellingShingle System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
Valina
Valine
Biotecnología
Biotechnology
Tecnología farmacéutica
Pharmaceutical technology
Microorganismos
Micro-organisms
Bioeconomía
Bioeconomy
Subproductos de la leche
Milk by-products
http://aims.fao.org/aos/agrovoc/c_bcba0163
http://aims.fao.org/aos/agrovoc/c_4827
https://id.nlm.nih.gov/mesh/D014633
https://id.nlm.nih.gov/mesh/D001709
title_short System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
title_full System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
title_fullStr System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
title_full_unstemmed System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
title_sort System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
dc.creator.fl_str_mv Carranza Saavedra, Darwin
Sánchez Henao, Claudia Patricia
Zapata Montoya, José Edgar
Torres Bacete, Jesús
Blázquez, Blas
Nogales, Juan
dc.contributor.author.none.fl_str_mv Carranza Saavedra, Darwin
Sánchez Henao, Claudia Patricia
Zapata Montoya, José Edgar
Torres Bacete, Jesús
Blázquez, Blas
Nogales, Juan
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Nutrición y Tecnología de Alimentos
dc.subject.decs.none.fl_str_mv Valina
Valine
Biotecnología
Biotechnology
topic Valina
Valine
Biotecnología
Biotechnology
Tecnología farmacéutica
Pharmaceutical technology
Microorganismos
Micro-organisms
Bioeconomía
Bioeconomy
Subproductos de la leche
Milk by-products
http://aims.fao.org/aos/agrovoc/c_bcba0163
http://aims.fao.org/aos/agrovoc/c_4827
https://id.nlm.nih.gov/mesh/D014633
https://id.nlm.nih.gov/mesh/D001709
dc.subject.lemb.none.fl_str_mv Tecnología farmacéutica
Pharmaceutical technology
Microorganismos
Micro-organisms
dc.subject.agrovoc.none.fl_str_mv Bioeconomía
Bioeconomy
Subproductos de la leche
Milk by-products
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_bcba0163
http://aims.fao.org/aos/agrovoc/c_4827
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D014633
https://id.nlm.nih.gov/mesh/D001709
description ABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-06-01T19:07:13Z
dc.date.available.none.fl_str_mv 2024-06-01T19:07:13Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39530
dc.identifier.doi.none.fl_str_mv 10.3389/fbioe.2023.1176445
dc.identifier.eissn.none.fl_str_mv 2296-4185
identifier_str_mv Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445
10.3389/fbioe.2023.1176445
2296-4185
url https://hdl.handle.net/10495/39530
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Front. Bioeng. Biotechnol.
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 1
dc.relation.ispartofjournal.spa.fl_str_mv Frontiers in Bioengineering and Biotechnology
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf - application/epub
dc.publisher.spa.fl_str_mv Frontiers Media
dc.publisher.place.spa.fl_str_mv Lausana, Suiza
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/6311370d-8552-4caa-9bbd-0dde83bc270d/download
https://bibliotecadigital.udea.edu.co/bitstreams/529466c8-1285-4770-9a3a-2cca7fa50ea5/download
https://bibliotecadigital.udea.edu.co/bitstreams/8d28f5c5-9984-4216-a7df-7b468d3ffaa5/download
https://bibliotecadigital.udea.edu.co/bitstreams/f92cdc7a-4c3b-4879-8f3a-8441aad222c8/download
https://bibliotecadigital.udea.edu.co/bitstreams/61c89566-64bb-42d7-9e42-8abd94b0026c/download
https://bibliotecadigital.udea.edu.co/bitstreams/0a5e0646-3834-433b-b1a5-f84c3e22b74d/download
bitstream.checksum.fl_str_mv 1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
18f25def75eef4984d3273603d455100
74f02073d196674100de81bedb66b865
428bdce5f4db5df4798bd63e468688f1
727c757edb9680467b717c61a38d9862
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052625139597312
spelling Carranza Saavedra, DarwinSánchez Henao, Claudia PatriciaZapata Montoya, José EdgarTorres Bacete, JesúsBlázquez, BlasNogales, JuanGrupo de Nutrición y Tecnología de Alimentos2024-06-01T19:07:13Z2024-06-01T19:07:13Z2023Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445https://hdl.handle.net/10495/3953010.3389/fbioe.2023.11764452296-4185ABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.COL001077114 páginasapplication/pdf - application/epubengFrontiers MediaLausana, Suizahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstockArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionValinaValineBiotecnologíaBiotechnologyTecnología farmacéuticaPharmaceutical technologyMicroorganismosMicro-organismsBioeconomíaBioeconomySubproductos de la lecheMilk by-productshttp://aims.fao.org/aos/agrovoc/c_bcba0163http://aims.fao.org/aos/agrovoc/c_4827https://id.nlm.nih.gov/mesh/D014633https://id.nlm.nih.gov/mesh/D001709Front. Bioeng. Biotechnol.1411Frontiers in Bioengineering and BiotechnologyPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/6311370d-8552-4caa-9bbd-0dde83bc270d/download1646d1f6b96dbbbc38035efc9239ac9cMD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/529466c8-1285-4770-9a3a-2cca7fa50ea5/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADORIGINALZapataJosé_2023_System_Metabolic_Engineering_Escherichia.epubZapataJosé_2023_System_Metabolic_Engineering_Escherichia.epubArtículo de investigaciónapplication/epub+zip1982426https://bibliotecadigital.udea.edu.co/bitstreams/8d28f5c5-9984-4216-a7df-7b468d3ffaa5/download18f25def75eef4984d3273603d455100MD51trueAnonymousREADZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdfZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdfArtículo de investigaciónapplication/pdf3140951https://bibliotecadigital.udea.edu.co/bitstreams/f92cdc7a-4c3b-4879-8f3a-8441aad222c8/download74f02073d196674100de81bedb66b865MD52falseAnonymousREADTEXTZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.txtZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.txtExtracted texttext/plain68052https://bibliotecadigital.udea.edu.co/bitstreams/61c89566-64bb-42d7-9e42-8abd94b0026c/download428bdce5f4db5df4798bd63e468688f1MD55falseAnonymousREADTHUMBNAILZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.jpgZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.jpgGenerated Thumbnailimage/jpeg11927https://bibliotecadigital.udea.edu.co/bitstreams/0a5e0646-3834-433b-b1a5-f84c3e22b74d/download727c757edb9680467b717c61a38d9862MD56falseAnonymousREAD10495/39530oai:bibliotecadigital.udea.edu.co:10495/395302025-03-27 01:15:08.207http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=