System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock
ABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploit...
- Autores:
-
Carranza Saavedra, Darwin
Sánchez Henao, Claudia Patricia
Zapata Montoya, José Edgar
Torres Bacete, Jesús
Blázquez, Blas
Nogales, Juan
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39530
- Acceso en línea:
- https://hdl.handle.net/10495/39530
- Palabra clave:
- Valina
Valine
Biotecnología
Biotechnology
Tecnología farmacéutica
Pharmaceutical technology
Microorganismos
Micro-organisms
Bioeconomía
Bioeconomy
Subproductos de la leche
Milk by-products
http://aims.fao.org/aos/agrovoc/c_bcba0163
http://aims.fao.org/aos/agrovoc/c_4827
https://id.nlm.nih.gov/mesh/D014633
https://id.nlm.nih.gov/mesh/D001709
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_9538627577bdd9fb18de930f7a5a5af3 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/39530 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| title |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| spellingShingle |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock Valina Valine Biotecnología Biotechnology Tecnología farmacéutica Pharmaceutical technology Microorganismos Micro-organisms Bioeconomía Bioeconomy Subproductos de la leche Milk by-products http://aims.fao.org/aos/agrovoc/c_bcba0163 http://aims.fao.org/aos/agrovoc/c_4827 https://id.nlm.nih.gov/mesh/D014633 https://id.nlm.nih.gov/mesh/D001709 |
| title_short |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| title_full |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| title_fullStr |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| title_full_unstemmed |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| title_sort |
System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock |
| dc.creator.fl_str_mv |
Carranza Saavedra, Darwin Sánchez Henao, Claudia Patricia Zapata Montoya, José Edgar Torres Bacete, Jesús Blázquez, Blas Nogales, Juan |
| dc.contributor.author.none.fl_str_mv |
Carranza Saavedra, Darwin Sánchez Henao, Claudia Patricia Zapata Montoya, José Edgar Torres Bacete, Jesús Blázquez, Blas Nogales, Juan |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Nutrición y Tecnología de Alimentos |
| dc.subject.decs.none.fl_str_mv |
Valina Valine Biotecnología Biotechnology |
| topic |
Valina Valine Biotecnología Biotechnology Tecnología farmacéutica Pharmaceutical technology Microorganismos Micro-organisms Bioeconomía Bioeconomy Subproductos de la leche Milk by-products http://aims.fao.org/aos/agrovoc/c_bcba0163 http://aims.fao.org/aos/agrovoc/c_4827 https://id.nlm.nih.gov/mesh/D014633 https://id.nlm.nih.gov/mesh/D001709 |
| dc.subject.lemb.none.fl_str_mv |
Tecnología farmacéutica Pharmaceutical technology Microorganismos Micro-organisms |
| dc.subject.agrovoc.none.fl_str_mv |
Bioeconomía Bioeconomy Subproductos de la leche Milk by-products |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_bcba0163 http://aims.fao.org/aos/agrovoc/c_4827 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D014633 https://id.nlm.nih.gov/mesh/D001709 |
| description |
ABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-06-01T19:07:13Z |
| dc.date.available.none.fl_str_mv |
2024-06-01T19:07:13Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/39530 |
| dc.identifier.doi.none.fl_str_mv |
10.3389/fbioe.2023.1176445 |
| dc.identifier.eissn.none.fl_str_mv |
2296-4185 |
| identifier_str_mv |
Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445 10.3389/fbioe.2023.1176445 2296-4185 |
| url |
https://hdl.handle.net/10495/39530 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Front. Bioeng. Biotechnol. |
| dc.relation.citationendpage.spa.fl_str_mv |
14 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
1 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Frontiers in Bioengineering and Biotechnology |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf - application/epub |
| dc.publisher.spa.fl_str_mv |
Frontiers Media |
| dc.publisher.place.spa.fl_str_mv |
Lausana, Suiza |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/6311370d-8552-4caa-9bbd-0dde83bc270d/download https://bibliotecadigital.udea.edu.co/bitstreams/529466c8-1285-4770-9a3a-2cca7fa50ea5/download https://bibliotecadigital.udea.edu.co/bitstreams/8d28f5c5-9984-4216-a7df-7b468d3ffaa5/download https://bibliotecadigital.udea.edu.co/bitstreams/f92cdc7a-4c3b-4879-8f3a-8441aad222c8/download https://bibliotecadigital.udea.edu.co/bitstreams/61c89566-64bb-42d7-9e42-8abd94b0026c/download https://bibliotecadigital.udea.edu.co/bitstreams/0a5e0646-3834-433b-b1a5-f84c3e22b74d/download |
| bitstream.checksum.fl_str_mv |
1646d1f6b96dbbbc38035efc9239ac9c 8a4605be74aa9ea9d79846c1fba20a33 18f25def75eef4984d3273603d455100 74f02073d196674100de81bedb66b865 428bdce5f4db5df4798bd63e468688f1 727c757edb9680467b717c61a38d9862 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052625139597312 |
| spelling |
Carranza Saavedra, DarwinSánchez Henao, Claudia PatriciaZapata Montoya, José EdgarTorres Bacete, JesúsBlázquez, BlasNogales, JuanGrupo de Nutrición y Tecnología de Alimentos2024-06-01T19:07:13Z2024-06-01T19:07:13Z2023Carranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445https://hdl.handle.net/10495/3953010.3389/fbioe.2023.11764452296-4185ABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.COL001077114 páginasapplication/pdf - application/epubengFrontiers MediaLausana, Suizahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstockArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionValinaValineBiotecnologíaBiotechnologyTecnología farmacéuticaPharmaceutical technologyMicroorganismosMicro-organismsBioeconomíaBioeconomySubproductos de la lecheMilk by-productshttp://aims.fao.org/aos/agrovoc/c_bcba0163http://aims.fao.org/aos/agrovoc/c_4827https://id.nlm.nih.gov/mesh/D014633https://id.nlm.nih.gov/mesh/D001709Front. Bioeng. Biotechnol.1411Frontiers in Bioengineering and BiotechnologyPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/6311370d-8552-4caa-9bbd-0dde83bc270d/download1646d1f6b96dbbbc38035efc9239ac9cMD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/529466c8-1285-4770-9a3a-2cca7fa50ea5/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADORIGINALZapataJosé_2023_System_Metabolic_Engineering_Escherichia.epubZapataJosé_2023_System_Metabolic_Engineering_Escherichia.epubArtículo de investigaciónapplication/epub+zip1982426https://bibliotecadigital.udea.edu.co/bitstreams/8d28f5c5-9984-4216-a7df-7b468d3ffaa5/download18f25def75eef4984d3273603d455100MD51trueAnonymousREADZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdfZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdfArtículo de investigaciónapplication/pdf3140951https://bibliotecadigital.udea.edu.co/bitstreams/f92cdc7a-4c3b-4879-8f3a-8441aad222c8/download74f02073d196674100de81bedb66b865MD52falseAnonymousREADTEXTZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.txtZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.txtExtracted texttext/plain68052https://bibliotecadigital.udea.edu.co/bitstreams/61c89566-64bb-42d7-9e42-8abd94b0026c/download428bdce5f4db5df4798bd63e468688f1MD55falseAnonymousREADTHUMBNAILZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.jpgZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdf.jpgGenerated Thumbnailimage/jpeg11927https://bibliotecadigital.udea.edu.co/bitstreams/0a5e0646-3834-433b-b1a5-f84c3e22b74d/download727c757edb9680467b717c61a38d9862MD56falseAnonymousREAD10495/39530oai:bibliotecadigital.udea.edu.co:10495/395302025-03-27 01:15:08.207http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
