Entropies from Markov Models as Complexity Measures of Embedded Attractors

ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories...

Full description

Autores:
Godino Llorente, Juan Ignacio
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/7652
Acceso en línea:
http://hdl.handle.net/10495/7652
Palabra clave:
Complexity analysis
Entropy measures
Hidden Markov models
Principal curve
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id UDEA2_930a84d2ed3868472456216389d9e38c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/7652
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Entropies from Markov Models as Complexity Measures of Embedded Attractors
title Entropies from Markov Models as Complexity Measures of Embedded Attractors
spellingShingle Entropies from Markov Models as Complexity Measures of Embedded Attractors
Complexity analysis
Entropy measures
Hidden Markov models
Principal curve
title_short Entropies from Markov Models as Complexity Measures of Embedded Attractors
title_full Entropies from Markov Models as Complexity Measures of Embedded Attractors
title_fullStr Entropies from Markov Models as Complexity Measures of Embedded Attractors
title_full_unstemmed Entropies from Markov Models as Complexity Measures of Embedded Attractors
title_sort Entropies from Markov Models as Complexity Measures of Embedded Attractors
dc.creator.fl_str_mv Godino Llorente, Juan Ignacio
dc.contributor.author.none.fl_str_mv Godino Llorente, Juan Ignacio
dc.contributor.researchgroup.spa.fl_str_mv Simulación de Comportamientos de Sistemas (SICOSIS)
dc.subject.none.fl_str_mv Complexity analysis
Entropy measures
Hidden Markov models
Principal curve
topic Complexity analysis
Entropy measures
Hidden Markov models
Principal curve
description ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2017-07-14T16:07:47Z
dc.date.available.none.fl_str_mv 2017-07-14T16:07:47Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv J. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e17063595
dc.identifier.issn.none.fl_str_mv 1099-4300
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/7652
dc.identifier.doi.none.fl_str_mv 10.3390/e17063595
identifier_str_mv J. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e17063595
1099-4300
10.3390/e17063595
url http://hdl.handle.net/10495/7652
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 3620
dc.relation.citationissue.spa.fl_str_mv 6
dc.relation.citationstartpage.spa.fl_str_mv 3595
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.ispartofjournal.spa.fl_str_mv Entropy
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/2.5/co/
dc.rights.accessrights.*.fl_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/2.5/co/
Atribución 2.5 Colombia (CC BY 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 25
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Suiza
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/9c7776b2-dc48-4cd7-8eaf-52faa5521ebf/download
https://bibliotecadigital.udea.edu.co/bitstreams/58c73eb2-4fe6-4f37-9849-7c63abf19c8c/download
https://bibliotecadigital.udea.edu.co/bitstreams/5704da51-e623-4230-b5b6-7c72b8fd37e5/download
https://bibliotecadigital.udea.edu.co/bitstreams/50187497-bd4b-4ea0-a520-5285c93758d0/download
https://bibliotecadigital.udea.edu.co/bitstreams/ed3534f2-a8e7-421b-9d5e-2d23441eb5e5/download
https://bibliotecadigital.udea.edu.co/bitstreams/e52ff9b8-2034-4dc9-97e6-dade9b2d6bb3/download
https://bibliotecadigital.udea.edu.co/bitstreams/efafae7c-e875-410d-9dad-8ab960fbb16d/download
bitstream.checksum.fl_str_mv e9c931ea8fcf4df8bbdaf9ea1f2283a0
8a4605be74aa9ea9d79846c1fba20a33
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a3440ac8f8c205ec1a44a275f5f7241c
16ac4724a8e05ea1cdaa087de3e37b5b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052601266667520
spelling Godino Llorente, Juan IgnacioSimulación de Comportamientos de Sistemas (SICOSIS)2017-07-14T16:07:47Z2017-07-14T16:07:47Z2015J. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e170635951099-4300http://hdl.handle.net/10495/765210.3390/e17063595ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.25application/pdfengMDPI AGSuizahttps://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/2.5/co/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Complexity analysisEntropy measuresHidden Markov modelsPrincipal curveEntropies from Markov Models as Complexity Measures of Embedded AttractorsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion36206359517EntropyPublicationORIGINALAriasJulian_2015_EntropiesMarkovModels.pdfAriasJulian_2015_EntropiesMarkovModels.pdfArtículo de investigaciónapplication/pdf747426https://bibliotecadigital.udea.edu.co/bitstreams/9c7776b2-dc48-4cd7-8eaf-52faa5521ebf/downloade9c931ea8fcf4df8bbdaf9ea1f2283a0MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/58c73eb2-4fe6-4f37-9849-7c63abf19c8c/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/5704da51-e623-4230-b5b6-7c72b8fd37e5/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/50187497-bd4b-4ea0-a520-5285c93758d0/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/ed3534f2-a8e7-421b-9d5e-2d23441eb5e5/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADTEXTAriasJulian_2015_EntropiesMarkovModels.pdf.txtAriasJulian_2015_EntropiesMarkovModels.pdf.txtExtracted texttext/plain76491https://bibliotecadigital.udea.edu.co/bitstreams/e52ff9b8-2034-4dc9-97e6-dade9b2d6bb3/downloada3440ac8f8c205ec1a44a275f5f7241cMD56falseAnonymousREADTHUMBNAILAriasJulian_2015_EntropiesMarkovModels.pdf.jpgAriasJulian_2015_EntropiesMarkovModels.pdf.jpgGenerated Thumbnailimage/jpeg6670https://bibliotecadigital.udea.edu.co/bitstreams/efafae7c-e875-410d-9dad-8ab960fbb16d/download16ac4724a8e05ea1cdaa087de3e37b5bMD57falseAnonymousREAD10495/7652oai:bibliotecadigital.udea.edu.co:10495/76522025-03-27 00:53:08.916https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=