Entropies from Markov Models as Complexity Measures of Embedded Attractors
ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories...
- Autores:
-
Godino Llorente, Juan Ignacio
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/7652
- Acceso en línea:
- http://hdl.handle.net/10495/7652
- Palabra clave:
- Complexity analysis
Entropy measures
Hidden Markov models
Principal curve
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| id |
UDEA2_930a84d2ed3868472456216389d9e38c |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/7652 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| title |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| spellingShingle |
Entropies from Markov Models as Complexity Measures of Embedded Attractors Complexity analysis Entropy measures Hidden Markov models Principal curve |
| title_short |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| title_full |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| title_fullStr |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| title_full_unstemmed |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| title_sort |
Entropies from Markov Models as Complexity Measures of Embedded Attractors |
| dc.creator.fl_str_mv |
Godino Llorente, Juan Ignacio |
| dc.contributor.author.none.fl_str_mv |
Godino Llorente, Juan Ignacio |
| dc.contributor.researchgroup.spa.fl_str_mv |
Simulación de Comportamientos de Sistemas (SICOSIS) |
| dc.subject.none.fl_str_mv |
Complexity analysis Entropy measures Hidden Markov models Principal curve |
| topic |
Complexity analysis Entropy measures Hidden Markov models Principal curve |
| description |
ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes. |
| publishDate |
2015 |
| dc.date.issued.none.fl_str_mv |
2015 |
| dc.date.accessioned.none.fl_str_mv |
2017-07-14T16:07:47Z |
| dc.date.available.none.fl_str_mv |
2017-07-14T16:07:47Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
J. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e17063595 |
| dc.identifier.issn.none.fl_str_mv |
1099-4300 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/7652 |
| dc.identifier.doi.none.fl_str_mv |
10.3390/e17063595 |
| identifier_str_mv |
J. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e17063595 1099-4300 10.3390/e17063595 |
| url |
http://hdl.handle.net/10495/7652 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
3620 |
| dc.relation.citationissue.spa.fl_str_mv |
6 |
| dc.relation.citationstartpage.spa.fl_str_mv |
3595 |
| dc.relation.citationvolume.spa.fl_str_mv |
17 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Entropy |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución 2.5 Colombia (CC BY 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/2.5/co/ Atribución 2.5 Colombia (CC BY 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
25 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
MDPI AG |
| dc.publisher.place.spa.fl_str_mv |
Suiza |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/9c7776b2-dc48-4cd7-8eaf-52faa5521ebf/download https://bibliotecadigital.udea.edu.co/bitstreams/58c73eb2-4fe6-4f37-9849-7c63abf19c8c/download https://bibliotecadigital.udea.edu.co/bitstreams/5704da51-e623-4230-b5b6-7c72b8fd37e5/download https://bibliotecadigital.udea.edu.co/bitstreams/50187497-bd4b-4ea0-a520-5285c93758d0/download https://bibliotecadigital.udea.edu.co/bitstreams/ed3534f2-a8e7-421b-9d5e-2d23441eb5e5/download https://bibliotecadigital.udea.edu.co/bitstreams/e52ff9b8-2034-4dc9-97e6-dade9b2d6bb3/download https://bibliotecadigital.udea.edu.co/bitstreams/efafae7c-e875-410d-9dad-8ab960fbb16d/download |
| bitstream.checksum.fl_str_mv |
e9c931ea8fcf4df8bbdaf9ea1f2283a0 8a4605be74aa9ea9d79846c1fba20a33 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e a3440ac8f8c205ec1a44a275f5f7241c 16ac4724a8e05ea1cdaa087de3e37b5b |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052601266667520 |
| spelling |
Godino Llorente, Juan IgnacioSimulación de Comportamientos de Sistemas (SICOSIS)2017-07-14T16:07:47Z2017-07-14T16:07:47Z2015J. D. Arias and J. I. Godino, "Entropies from Markov Models as Complexity Measures of Embedded Attractors", Entropy, vol. 17, no. 6, p. 3595-3620, 2015. DOI:10.3390/e170635951099-4300http://hdl.handle.net/10495/765210.3390/e17063595ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes.25application/pdfengMDPI AGSuizahttps://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/2.5/co/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Complexity analysisEntropy measuresHidden Markov modelsPrincipal curveEntropies from Markov Models as Complexity Measures of Embedded AttractorsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion36206359517EntropyPublicationORIGINALAriasJulian_2015_EntropiesMarkovModels.pdfAriasJulian_2015_EntropiesMarkovModels.pdfArtículo de investigaciónapplication/pdf747426https://bibliotecadigital.udea.edu.co/bitstreams/9c7776b2-dc48-4cd7-8eaf-52faa5521ebf/downloade9c931ea8fcf4df8bbdaf9ea1f2283a0MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/58c73eb2-4fe6-4f37-9849-7c63abf19c8c/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/5704da51-e623-4230-b5b6-7c72b8fd37e5/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/50187497-bd4b-4ea0-a520-5285c93758d0/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/ed3534f2-a8e7-421b-9d5e-2d23441eb5e5/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADTEXTAriasJulian_2015_EntropiesMarkovModels.pdf.txtAriasJulian_2015_EntropiesMarkovModels.pdf.txtExtracted texttext/plain76491https://bibliotecadigital.udea.edu.co/bitstreams/e52ff9b8-2034-4dc9-97e6-dade9b2d6bb3/downloada3440ac8f8c205ec1a44a275f5f7241cMD56falseAnonymousREADTHUMBNAILAriasJulian_2015_EntropiesMarkovModels.pdf.jpgAriasJulian_2015_EntropiesMarkovModels.pdf.jpgGenerated Thumbnailimage/jpeg6670https://bibliotecadigital.udea.edu.co/bitstreams/efafae7c-e875-410d-9dad-8ab960fbb16d/download16ac4724a8e05ea1cdaa087de3e37b5bMD57falseAnonymousREAD10495/7652oai:bibliotecadigital.udea.edu.co:10495/76522025-03-27 00:53:08.916https://creativecommons.org/licenses/by/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
