Entropies from Markov Models as Complexity Measures of Embedded Attractors
ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories...
- Autores:
-
Godino Llorente, Juan Ignacio
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/7652
- Acceso en línea:
- http://hdl.handle.net/10495/7652
- Palabra clave:
- Complexity analysis
Entropy measures
Hidden Markov models
Principal curve
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/4.0/
| Summary: | ABSTRACT: This paper addresses the problem of measuring complexity from embedded attractors as a way to characterize changes in the dynamical behavior of different types of systems with a quasi-periodic behavior by observing their outputs. With the aim of measuring the stability of the trajectories of the attractor along time, this paper proposes three new estimations of entropy that are derived from a Markov model of the embedded attractor. The proposed estimators are compared with traditional nonparametric entropy measures, such as approximate entropy, sample entropy and fuzzy entropy, which only take into account the spatial dimension of the trajectory. The method proposes the use of an unsupervised algorithm to find the principal curve, which is considered as the “profile trajectory”, that will serve to adjust the Markov model. The new entropy measures are evaluated using three synthetic experiments and three datasets of physiological signals. In terms of consistency and discrimination capabilities, the results show that the proposed measures perform better than the other entropy measures used for comparison purposes. |
|---|
