Diseño de una herramienta para la detección de arritmias cardíacas en electrocardiogramas utilizando técnicas de aprendizaje automático
RESUMEN : Esta base de datos de investigación para señales de electrocardiograma (ECG) de 12 derivaciones (permite visualizar la actividad eléctrica del corazón desde la perspectiva frontal y horizontal) fue creada bajo los auspicios de la Universidad Chapman, el Hospital del Pueblo de Shaoxing (Esc...
- Autores:
-
Ruiz Luna, Alejandro
Álvarez Patiño, Robinson
- Tipo de recurso:
- Tesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35511
- Acceso en línea:
- https://hdl.handle.net/10495/35511
- Palabra clave:
- Arritmias cardíacas
Arrhythmias, Cardiac
Aprendizaje automático
Machine Learning
Conjunto de datos
Dataset
Modelo de clasificación
Detección de arritmias
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| Summary: | RESUMEN : Esta base de datos de investigación para señales de electrocardiograma (ECG) de 12 derivaciones (permite visualizar la actividad eléctrica del corazón desde la perspectiva frontal y horizontal) fue creada bajo los auspicios de la Universidad Chapman, el Hospital del Pueblo de Shaoxing (Escuela de Medicina de la Universidad de Zhejiang del Hospital Shaoxing) y el Primer Hospital de Ningbo. Su objetivo es permitir a la comunidad científica realizar nuevos estudios sobre arritmia y otras afecciones cardiovasculares. Ciertos tipos de arritmias, como la fibrilación auricular, tienen un impacto negativo pronunciado en la salud pública, la calidad de vida y los gastos médicos. Como prueba no invasiva, el ECG es una herramienta diagnóstica importante y vital para detectar estas condiciones. Esta práctica, sin embargo, genera grandes cantidades de datos, cuyo análisis requiere un tiempo y esfuerzo considerable por parte de expertos humanos. Las herramientas modernas de aprendizaje automático y estadísticas pueden ser entrenadas en datos grandes y de alta calidad para lograr niveles excepcionales de precisión diagnóstica automatizada. Por lo tanto, recopilamos y difundimos esta nueva base de datos que contiene ECGs de 12 derivaciones de 10.646 pacientes con una frecuencia de muestreo de 500 Hz que presenta múltiples ritmos comunes y condiciones cardiovasculares adicionales, todos etiquetados por expertos profesionales. El conjunto de datos se puede utilizar para diseñar, comparar y ajustar nuevas y clásicas técnicas estadísticas y de aprendizaje automático en estudios centrados en arritmia y otras afecciones cardiovasculares. El presente estudio da a conocer los métodos y procedimientos que utilizamos para encontrar la técnica que tiene mejores resultados frente a este problema en particular. Ilustra los procesos de exploración de datos y tratamiento de datos (especialmente por ser un dataset muy des balanceado), las métricas que usamos para considerar los resultados óptimos y nuestra recomendación final incluyendo hiperparámetros. |
|---|
