Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares
El estudio de las interacciones bióticas es importante para comprender la ecología evolutiva de las especies. Respecto a estas, el parasitismo por hemosporidios en aves es una interacción que genera presiones evolutivas sobre las comunidades de aves y juega un papel importante en su estructuración....
- Autores:
-
Pinzón Cárdenas, Paula Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/45933
- Acceso en línea:
- https://hdl.handle.net/10495/45933
- Palabra clave:
- Aves - Parásitos
Birds - Parasites
Aves - Infecciones
Birds - Infections
Comunidades de aves
Bird communities
Aves - Ecología
Birds - Ecology
Aves - Evolución
Birds - Evolution
Aves - Hábitat
Birds - Habitat
Haemosporida
Prevalencia
Prevalence
Malaria aviar
Avian malaria
Parasitismo
Parasitism
Relación huésped parásito
Host parasite relations
http://aims.fao.org/aos/agrovoc/c_16686
http://aims.fao.org/aos/agrovoc/c_5577
http://aims.fao.org/aos/agrovoc/c_11620
http://id.loc.gov/authorities/subjects/sh86003644
http://id.loc.gov/authorities/subjects/sh2003011141
http://id.loc.gov/authorities/subjects/sh2004014360
http://id.loc.gov/authorities/subjects/sh2005020407
http://id.loc.gov/authorities/subjects/sh85014316
http://id.loc.gov/authorities/subjects/sh2006005918
https://id.nlm.nih.gov/mesh/D016787
https://id.nlm.nih.gov/mesh/D015995
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_91ed88c7bffe912bd45fd33bbf2cc807 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/45933 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| title |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| spellingShingle |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares Aves - Parásitos Birds - Parasites Aves - Infecciones Birds - Infections Comunidades de aves Bird communities Aves - Ecología Birds - Ecology Aves - Evolución Birds - Evolution Aves - Hábitat Birds - Habitat Haemosporida Prevalencia Prevalence Malaria aviar Avian malaria Parasitismo Parasitism Relación huésped parásito Host parasite relations http://aims.fao.org/aos/agrovoc/c_16686 http://aims.fao.org/aos/agrovoc/c_5577 http://aims.fao.org/aos/agrovoc/c_11620 http://id.loc.gov/authorities/subjects/sh86003644 http://id.loc.gov/authorities/subjects/sh2003011141 http://id.loc.gov/authorities/subjects/sh2004014360 http://id.loc.gov/authorities/subjects/sh2005020407 http://id.loc.gov/authorities/subjects/sh85014316 http://id.loc.gov/authorities/subjects/sh2006005918 https://id.nlm.nih.gov/mesh/D016787 https://id.nlm.nih.gov/mesh/D015995 ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad |
| title_short |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| title_full |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| title_fullStr |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| title_full_unstemmed |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| title_sort |
Factores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviares |
| dc.creator.fl_str_mv |
Pinzón Cárdenas, Paula Alejandra |
| dc.contributor.advisor.none.fl_str_mv |
Rivera Gutiérrez, Héctor Fabio González Quevedo, Catalina Pérez Tris, Javier Rúa Uribe, Guillermo León |
| dc.contributor.author.none.fl_str_mv |
Pinzón Cárdenas, Paula Alejandra |
| dc.contributor.researchgroup.none.fl_str_mv |
Ecología y Evolución de Vertebrados |
| dc.subject.lcsh.none.fl_str_mv |
Aves - Parásitos Birds - Parasites Aves - Infecciones Birds - Infections Comunidades de aves Bird communities Aves - Ecología Birds - Ecology Aves - Evolución Birds - Evolution Aves - Hábitat Birds - Habitat |
| topic |
Aves - Parásitos Birds - Parasites Aves - Infecciones Birds - Infections Comunidades de aves Bird communities Aves - Ecología Birds - Ecology Aves - Evolución Birds - Evolution Aves - Hábitat Birds - Habitat Haemosporida Prevalencia Prevalence Malaria aviar Avian malaria Parasitismo Parasitism Relación huésped parásito Host parasite relations http://aims.fao.org/aos/agrovoc/c_16686 http://aims.fao.org/aos/agrovoc/c_5577 http://aims.fao.org/aos/agrovoc/c_11620 http://id.loc.gov/authorities/subjects/sh86003644 http://id.loc.gov/authorities/subjects/sh2003011141 http://id.loc.gov/authorities/subjects/sh2004014360 http://id.loc.gov/authorities/subjects/sh2005020407 http://id.loc.gov/authorities/subjects/sh85014316 http://id.loc.gov/authorities/subjects/sh2006005918 https://id.nlm.nih.gov/mesh/D016787 https://id.nlm.nih.gov/mesh/D015995 ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad |
| dc.subject.decs.none.fl_str_mv |
Haemosporida Prevalencia Prevalence |
| dc.subject.agrovoc.none.fl_str_mv |
Malaria aviar Avian malaria Parasitismo Parasitism Relación huésped parásito Host parasite relations |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_16686 http://aims.fao.org/aos/agrovoc/c_5577 http://aims.fao.org/aos/agrovoc/c_11620 |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh86003644 http://id.loc.gov/authorities/subjects/sh2003011141 http://id.loc.gov/authorities/subjects/sh2004014360 http://id.loc.gov/authorities/subjects/sh2005020407 http://id.loc.gov/authorities/subjects/sh85014316 http://id.loc.gov/authorities/subjects/sh2006005918 |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D016787 https://id.nlm.nih.gov/mesh/D015995 |
| dc.subject.ods.none.fl_str_mv |
ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad |
| description |
El estudio de las interacciones bióticas es importante para comprender la ecología evolutiva de las especies. Respecto a estas, el parasitismo por hemosporidios en aves es una interacción que genera presiones evolutivas sobre las comunidades de aves y juega un papel importante en su estructuración. Los factores que tienen influencia sobre la probabilidad de infección por Hemosporidios de las especies de hospederos en estos sistemas han sido de interés en las últimas décadas; se sabe que algunas características que describen la historia de vida o morfología de las especies hospederas pueden influir en su probabilidad de infección por hemosporidios aviares, además, que las variables ambientales y climáticas suelen ser factores clave en que se desarrolle esta interacción. Este estudio se realizó para determinar los factores que influyen en la probabilidad de infección de las especies por hemosporidios aviares. Se dividió en dos capítulos, en el primero se buscó determinar los factores ecológicos y morfológicos de las especies que influyen en la probabilidad de infección de éstas por hemosporidios aviares. En el segundo se buscó conocer si las características externas a las especies, como los factores ambientales y climáticos y la especificidad de los linajes de hemosporidios, tienen influencia en esta probabilidad de infección. Para determinar esto, se usaron diagnósticos de hemosporidios aviares de cuatro áreas de influencia de embalses de Antioquia (Playas, Porce II, Porce III y el proyecto hidroeléctrico Ituango en el Cañón del Rio Cauca). Por otra parte, para las especies de aves presentes se realizó recopilación de información de variables Ecológicas (Migración y Estrato), Morfológicas (Longitud del tarso, Peso, Dimorfismo sexual) y de coloración (Colorido y dicromatismo sexual), además se calculó un índice de generalización del tipo de hábitat utilizado por cada una de las especies. Posteriormente, se determinaron localidades dadas por los tipos de bosque en el Cañón del río Cauca y se realizó una caracterización ambiental para cada localidad a partir de 18 variables ambientales, también se calculó un índice de especificidad para los linajes de hemosporidios encontrados. Se abordó la probabilidad de infección de las especies usando las métricas de prevalencia y la presencia de la infección. A partir de esto, se usó un novedoso análisis comparativo filogenéticamente a partir de un phylo-glm que integró todas las características de las especies para la búsqueda del mejor modelo. También se usó un enfoque de modelo lineal generalizado mixto con la especie como factor aleatorio, para integrar todos los factores ambientales en la búsqueda del modelo que mejor se ajusta a la probabilidad de infección de las especies. Y se usó una regresión lineal para determinar si la especificidad de los linajes tiene relación con la prevalencia de las especies. Los resultados obtenidos en el primer capítulo confirman que algunas características de las especies de aves tienen un efecto sobre su probabilidad de infección. Especies que son generalistas, tienen migración boreal y mayor longitud del tarso, tienen mayor probabilidad de ser infectadas por hemosporidios. Esto se debe posiblemente a que son características que aumentan la exposición a mayor cantidad de hemosporidios y vectores de la infección. Además, características como el dicromatismo y el colorido tienen una tendencia no significativa en esta probabilidad. Adicionalmente, los resultados del segundo capítulo muestran que para este modelo de estudio no existe influencia significativa de la variación ambiental y climática, ni de la especialización de los linajes de hemosporidios que infectan a las especies en estos sitios, sobre la probabilidad de infección de las especies, confirmando que el efecto principal de la variación en la prevalencia está dado por los hospederos. Estos resultados aportan información valiosa para conocer la dinámica de las interacciones entre hemosporidios y sus hospederos aviares en el trópico, así como para predecir los factores que hacen a las especies más susceptibles a estas infecciones, teniendo en cuenta que pueden tener consecuencias negativas para las comunidades de aves. |
| publishDate |
2023 |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2025-05-15T15:39:47Z |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| status_str |
draft |
| dc.identifier.citation.none.fl_str_mv |
Pinzón-Cárdenas, P.A. (2023). Factores que influyen en la probabilidad de infección de las especies de aves por Hemosporidios aviares [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/45933 |
| identifier_str_mv |
Pinzón-Cárdenas, P.A. (2023). Factores que influyen en la probabilidad de infección de las especies de aves por Hemosporidios aviares [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia. |
| url |
https://hdl.handle.net/10495/45933 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.references.none.fl_str_mv |
Aguiar De Souza Penha, Víctor et al. 2023. “Host Life-History Traits Predict Haemosporidian Parasite Prevalence in Tanagers (Aves: Thraupidae).” Parasitology 150(1): 32–41. Alarcón-Elbal, P M et al. LOS CULÍCIDOS (DIPTERA, CULICIDAE) DEL VALLE MEDIO DEL EBRO I: LA RIOJA (NORTE DE ESPAÑA). Altizer, Sonia, Drew Harvell, and Elizabeth Friedle. 2003. “Rapid Evolutionary Dynamics and Disease Threats to Biodiversity.” Trends in Ecology & Evolution 18(11): 589–96. Arriero, E., Moreno, J., Merino, S., & Martínez, J. (2008). Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiological and biochemical zoology : PBZ, 81(2), 195–203. https://doi.org/10.1086/524393 Asghar, Muhammad et al. 2015. “Hidden Costs of Infection: Chronic Malaria Accelerates Telomere Degradation and Senescence in Wild Birds.” Science (New York, N.Y.) 347: 436–38. Atkinson CT, van Riper C. 1991. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M, editors. Bird-parasite interactions: ecology, evolution, and behavior. Oxford: Oxford University Press. p. 19–48. Atkinson, Carter T, Robert J Dusek, Karen L Woods, and William M Iko. 2000. 36 Journal of Wildlife Diseases PATHOGENICITY OF AVIAN MALARIA IN EXPERIMENTALLY-INFECTED HAWAII AMAKIHI. http://meridian.allenpress.com/jwd/article-pdf/36/2/197/2235963/0090-3558-36_2_197.pdf. Bahamonde-Daniela C. (2014). Prevalencia de malaria aviar en las aves más comunes del Parque Recreacional - Bosque Protector Jerusalén, Pichincha, Ecuador. Tesis trabajo de grado, Pontificia universidad católica del ecuador. Ecuador. Barton, Kamil. 2020. “Mu’min: Multi-Model Inference.” https://cran.r-project.org/package=MuMIn. Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software 67(1): 1–48. https://www.jstatsoft.org/index.php/jss/article/view/v067i01. BEAUDOIN, RICHARD L, JAMES E APPLEGATE, DAVID E DAVIS, and ROBERT G McClean. 1971. “A Model for The Ecology of Avian Malaria*.” Journal of Wildlife Diseases 7(1): 5–13. https://doi.org/10.7589/0090-3558-7.1.5. Belo NO, Pinheiro RT, Reis ES, Ricklefs RE, Braga ÉM (2011) Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil. PLOS ONE 6(3): e17654. https://doi.org/10.1371/journal.pone.0017654 Bensch, S., J. Perez-Tris, J. Waldenstrom & O. Hellgren. 2004. ¿Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution (N. Y). 58: 1617–1621. Bensch, S., M. Stjernman, D. Hasselquist, O. Ostman, B. Hansson, H. Westerdahl & R.T. Pinheiro. 2000. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. B Biol. Sci. 267: 1583–1589. Bensch, S., O. Hellgren & J. Pérez-Tris. 2009. Malavi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9: 1353–1358. Bernotienė, R., Žiegytė, R., Vaitkutė, G. et al,. (2019). Identificación de una nueva especie vector de hemoproteides aviares, con descripción de metodología para la determinación de vectores naturales de parásitos hemosporidianos. Vectores de parásitos 12, 307. https://doi.org/10.1186/s13071-019-3559-8. Bichet, C. , Sorci, G. , Robert, A. , Julliard, R. , Lendvai, AZ , Chastel, O. , … Loiseau, C. ( 2014 ). Epidemiología de la infección por Plasmodium relictum en el gorrión común . Revista de Parasitología , 100 , 59 – 65 Birds of the World (2022). Edited by S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg. Cornell Laboratory of Ornithology, Ithaca, NY, USA. https://birdsoftheworld.org/bow/home. Birdtree.org 2022. Website https://birdtree.org/. Blüthgen, N., Menzel, F. and Blüthgen, N. (2006) Measuring specialization in species interaction networks. BMC Ecology 6, 12. Booth, Trevor H. 2022. “Checking Bioclimatic Variables That Combine Temperature and Precipitation Data before Their Use in Species Distribution Models.” Austral Ecology 47(7): 1506–14. Bradley, Catherine A, and Sonia Altizer. 2005. “Parasites Hinder Monarch Butterfly Flight: Implications for Disease Spread in Migratory Hosts.” Ecology Letters 8(3): 290–300. https://doi.org/10.1111/j.1461-0248.2005.00722.x. Braga EM, Silveira P, Belo NO, Valkiūnas G. 2011. Avances recientes en el estudio de la malaria aviar: una vision general con énfasis en la distribución de Plasmodium spp en Brasil. Mem Inst Oswaldo Cruz. 106: 3–11. Burnham, Kenneth P., and David R. Anderson. 2002. Model Selection and Mulmodel Inference. Butler, M. A., & King, A. A. (2004). Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution. The American naturalist, 164(6), 683–695. https://doi.org/10.1086/426002. Castaño-Vázquez F., Merino S., Cuezva S., Sánchez-Moral S. 2020. Gases de nido como señal de atracción potencial para insectos voladores mordedores y otros ectoparásitos de aves que anidan en cavidades. Frente. Ecol. Evol; 8 :258. doi: 10.3389/fevo.2020.00258. Castro Johana , Guillermo Castillo, Jorge Salazar. 2016. INFLUENCE OF THE TEMPERATURE ON THE LIFE CYCLE OF THE NECROPHAGOUS SPECIE Compsomyiops arequipensis MELLO, 1968 (DIPTERA: CALLIPHORIDAE). Rev. Asoc. Col. Cienc.(Col.); 28: 105-116. Chagas, Carolina Romeiro Fernández, Josef Harl, and Gediminas Valkiūnas. 2021. “Co-Infections of Plasmodium Relictum Lineages PSGS1 and PGRW04 Are Readily Distinguishable by Broadly Used PCR-Based Protocols, with Remarks on Global Distribution of These Malaria Parasites.” Acta Trópica 217: 105860. https://www.sciencedirect.com/science/article/pii/S0001706X21000395. Chang Van-David. (2019). Factores que afectan la prevalencia de parásitos hemosporidios en una población silvestre del gorrión de collar rufo, Zonotrichia capensis. http://repositorio.upch.edu.pe/handle/upch/7013. Chang van-David and Katya Balta Abadie. Lima. 2017. UNIVERSIDAD PERUANA CAYETANO HEREDIA. Ciencias Y Filosofía, Facultad DE, David Alfonso Tesis Para Optar El Título de Licenciado En Biología. Chasar, A., Loiseau, C., Valkiūnas, G., Iezhova, T., Smith, T. B., & Sehgal, R. N. (2009). Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Molecular ecology, 18(19), 4121–4133. https://doi.org/10.1111/j.1365-294X.2009.04346.x Clark Nicolás J., Sonya M Clegg, Marcos R Lima. 2014. Una revision de la diversidad global en hemosporidios aviares (Plasmodium y Haemoproteus: Haemosporida): nuevos conocimientos a partir de datos moleculares. 44 (5): 329-38. Doi: 10.1016 / j.ijpara.2014.01.004. Clark, Nicholas J., Konstans Wells, Dimitar Dimitrov, and Sonya M. Clegg. 2016. “Co-Infections and Environmental Conditions Drive the Distributions of Blood Parasites in Wild Birds.” Journal of Animal Ecology 85(6): 1461–70. Cody, Martin L, and Jared M Diamond. 1975. Ecology and Evolution of Communities / Martin L. Cody and Jared M. Diamond, Editors. Cambridge, Mass: Belknap Press. Collins Julia and Abdelal Nadia. 2018. Spread of Disease, https://calculate.org.au/wpcontent/uploads/sites/15/2018/10/spread-of-disease.pdf Combes, Claude, Isaura de Buron, and Vincent Connors. 2002. “Parasitism: The Ecology and Evolution of Intimate Interactions.” Bibliovault OAI Repository, the University of Chicago Press. Combes, Claude. (2005). The Art of Being a Parasite. The University of Chicago Press. ISBN 978-0-226-11438-5. Cooney, Christopher R. et al. 2022. “Latitudinal Gradients in Avian Colorfulness.” Nature Ecology and Evolution 6(5): 622–29. Cornuault, J., Khimoun, A., Harrigan, R. J., Bourgeois, Y. X., Milá, B., Thébaud, C., & Heeb, P. (2013). The role of ecology in the geographical separation of blood parasites infecting an insular bird. Journal of Biogeography, 40(7), 1313-1323. Cozzarolo, Camille Sophie et al. 2019. “Sex-Biased Parasitism in Vector-Borne Disease: Vector Preference?” Plops ONE 14(5). Crawley, Michael J. 2013. “Statistical Modelling.” In The R Book, John Wiley & Sons, Ltd, 388–448. Dale, James et al. 2015. “The Effects of Life History and Sexual Selection on Male and Female Plumage Coloration.” Nature 527(7578): 367–70. De Angeli Dutra, Daniela, Antoine Filion, et al. 2021. “Migrant Birds Disperse Haemosporidian Parasites and Affect Their Transmission in Avian Communities.” Oikos 130(6): 979–88. De Angeli Dutra, Daniela, Nayara Belo, and Erika M. Braga. 2022. “Prevalence and Richness of Malaria and Malaria-like Parasites in Wild Birds from Different Biomes in South America.” Peer 10. De Angeli Dutra, Daniela, Alan Fecchio, Érika Martins Braga, and Robert Poulin. 2021. “Haemosporidian Taxonomic Composition, Network Centrality and Partner Fidelity between Resident and Migratory Avian Hosts.” Oecologia 197(2): 501–9. https://doi.org/10.1007/s00442-021-05031-5. de Angeli Dutra, D., Poulin, R., & Ferreira, F. C. (2022). Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution. Parasitology, 149(13), 1667–1678. https://doi.org/10.1017/S0031182022001378 Delhey, K. The colour of an avifauna: A quantitative analysis of the colour of Australian birds. Sci Rep 5, 18514 (2016). https://doi.org/10.1038/srep18514 Devictor, Vincent et al. 2010. “Defining and Measuring Ecological Specialization.” Journal of Applied Ecology 47(1): 15–25. Dorazio, R. M., & Connor, E. F. (2014). Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat. PloS one, 9(4), e94323. https://doi.org/10.1371/journal.pone.0094323. Dormann, C.F. (2011) How to be a specialist? Quantifying specialisation in pollination networks. Network Biology 1, 1–20 Dormann, C.F., Fründ, J., Blüthgen, N., and Gruber, B. (2009) Indices, graphs and null models: analysing bipartite ecological networks. The Open Ecology Journal 2, 7–24. Escobar, Luis E, Andrés Lira-Noriega, Gonzalo Medina-Vogel, and A Townsend Peterson. Potential for Spread of the White-Nose Fungus (Pseudogymnoascus Destructans) in the Americas: Use of Maxent and Niche A to Assure Strict Model Transference. Fajardo-Gutiérrez Arturo. (2017). Medición en epidemiología: prevalencia, incidencia, riesgo, medidas de impacto. Rev. alerg. Méx. vol.64 no.1 Ciudad de México ene./mar. 2017. http://dx.doi.org/10.29262/ram.v64i1.252. Fallon, SM, Bermingham, E. y Ricklefs, RE (2003). Revisión de los efectos de isla y taxón en el parasitismo: Malaria aviar en las Antillas Menores . Evolución , 57 , 606–615. Fecchio, Alan et al. 2022. “Host Foraging Behavior and Nest Type Influence Prevalence of Avian Haemosporidian Parasites in the Pantanal.” Parasitology Research 121(5): 1407–17. https://doi.org/10.1007/s00436-022-07453-3. Ferraguti, Martina et al. 2013. “Avian Plasmodium in Culex and Ochlerotatus Mosquitoes from Southern Spain: Effects of Season and Host-Feeding Source on Parasite Dynamics.” Plops ONE 8(6). Ferraguti, M., Martínez-de la Puente, J., Bensch, S., Roiz, D., Ruiz, S., Viana, D. S., Soriguer, R. C., & Figuerola, J. (2018). Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. The Journal of animal ecology, 87(3), 727–740. Fick, S.E, and R.J Hijmans. 2017. “Worldclim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology. Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied Longitudinal Analysis. Wiley. Fritzsche McKay A, Hoye BJ. Are Migratory Animals Superspreaders of Infection? Integr Comp Biol. 2016 Aug;56(2):260-7. doi: 10.1093/icb/icw054. PMID: 27462034. Fuentes-Perla. (2008). Hemoparásitos de Guacamaya, loros, Pericas, totoras y tucanes del Centro de rehabilitación de fauna Silvestre arcas, Petén, Guatemala. Facultad De Medicina Veterinaria Y Zootecnia Escuela De Veterinaria Rehabilitation De Fauna Silvestre Arcas. Guatemala. Fuller, T., Bensch, S., Müller, I. et al. La ecología de las enfermedades infecciosas emergentes en las aves migratorias: una evaluación del papel del cambio climático y prioridades para futuras investigaciones. EcoSalud 9 , 80–88 (2012). https://doi.org/10.1007/s10393-012-0750-1 Galen, Spencer C, and Christopher C Witt. 2014. “Diverse Avian Malaria and Other Haemosporidian Parasites in Andean House Wrens: Evidence for Regional Co-Diversification by Host-Switching.” Journal of Avian Biology 45(4): 374–86. https://doi.org/10.1111/jav.00375. Gangoso, Laura, Rafael Gutierrez-Lopez, Josué Martínez-De La Puente, and Jordi Figuerola. 2016. “Genetic Colour Polymorphism Is Associated with Avian Malarial Infections.” Biology Letters 12(12). Gangoso, Laura, Rafael Gutiérrez-López, Josué Martínez-de la Puente, and Jordi Figuerola. 2019. “Louse Flies of Eleonora’s Falcons That Also Feed on Their Prey Are Evolutionary Dead-End Hosts for Blood Parasites.” Molecular Ecology 28(7): 1812–25. Ganser, Claudia et al. 2020. “Is It Best on the Nest? Effects of Avian Life-History on Haemosporidian Parasitism.” International Journal for Parasitology: Parasites and Wildlife 13: 62–71. https://doi.org/10.1016/j.ijppaw.2020.07.014. Gaona-Gordillo, I., Holtmann, B., Mouchet, A., Hutfluss, A., Sánchez-Tójar, A., & Dingemanse, N. J. (2023). Are animal personality, body condition, physiology and structural size integrated? A comparison of species, populations and sexes, and the value of study replication. The Journal of animal ecology, 10.1111/1365-2656.13966. Advance online publication. https://doi.org/10.1111/1365-2656.13966. GARAMSZEGI, LÁSZLÓ Z. 2011. “Climate Change Increases the Risk of Malaria in Birds.” Global Change Biology 17(5): 1751–59. https://doi.org/10.1111/j.1365-2486.2010.02346.x. García-Longoria, Luz, Alfonso Marzal, Florentino De Lope, and Laszlo Garamszegi. 2019. “Host-Parasite Interaction Explains Variation in the Prevalence of Avian Haemosporidians at the Community Level.” PLoS ONE 14(3). Garnham, Percy Cyril Claude. 1966. “Malaria Parasites and Other Haemosporidia.” Malaria Parasites and other Haemosporidia. G.F. Bennett, M.A. Peirce & R.W. Ashford (1993) Avian Haematozoa: mortality and pathogenicity, Journal of Natural History, 27:5, 993-1001, DOI: 10.1080/00222939300770621 Goater, Timothy M, Cameron P Goater, and Gerald W Esch. 2014. Parasitism : The Diversity and Ecology of Animal Parasites. Second edition. Cambridge, United Kingdom: Cambridge University Press. González, Angie D et al. 2014. “Mixed Species Flock, Nest Height, and Elevation Partially Explain Avian Haemoparasite Prevalence in Colombia.” PLOS ONE 9(6): e100695-. https://doi.org/10.1371/journal.pone.0100695. Gonzalez-Quevedo, Catalina, Richard G. Davies, and David S. Richardson. 2014. “Predictors of Malaria Infection in a Wild Bird Population: Landscape-Level Analyses Reveal Climatic and Anthropogenic Factors.” Journal of Animal Ecology 83(5): 1091–1102. Gonzalez-Quevedo, Catalina, Adriana Pabón, and Hector Fabio Rivera-Gutierrez. 2016. “Prévalence d’hémosporidies Dans Une Région Néotropicale d’endémisme Aviaire.” Avian Conservation and Ecology 11(1). Guacamayas, Hemoparásitos D E, Cotorras Y Tucanes, and D E L Centro. 2008. “Facultad De Medicina Veterinaria Y Zootecnia Escuela De Veterinaria Rehabilitación De Fauna Silvestre Arcas ,.” Gupta, Pooja, C. K. Vishnudas, V. V. Robin, and Guha Dharmarajan. 2020. “Host Phylogeny Matters: Examining Sources of Variation in Infection Risk by Blood Parasites across a Tropical Montane Bird Community in India.” Parasites and Vectors 13(1). Gutiérrez-López, Rafael et al. 2016. “Do Mosquitoes Transmit the Avian Malaria-like Parasite Haemoproteus? An Experimental Test of Vector Competence Using Mosquito Saliva.” Parasites and Vectors 9(1): 1–7. Gutiérrez-López, R., Martínez-de la Puente, J., Gangoso, L., Soriguer, R., & Figuerola, J. (2019). Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences. Parasites & vectors, 12(1), 87. https://doi.org/10.1186/s13071-019-3342-x Hackett, Shannon J. et al. 2008. “A Phylogenomic Study of Birds Reveals Their Evolutionary History.” Science 320(5884): 1763–68. Hawley, Dana M., and Sonia M. Altizer. 2011. “Disease Ecology Meets Ecological Immunology: Understanding the Links between Organismal Immunity and Infection Dynamics in Natural Populations.” Functional Ecology 25(1): 48–60. Hellgren, O., J. Waldenström & S. Bensch. 2004. a New Pcr Assay for Simultaneous Studies of Leucocytozoon, Plasmodium, and Haemoproteus From Avian Blood. J. Parasitol. 90: 797–802. Hellgren, O., Perez-Tris, J., & Bensch, S. (2009). A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology, 90(10), 2840-2849. https://doi.org/10.1890/08-1059.1 Hernández-Lara, Carolina, Fernando González-García, and Diego Santiago-Alarcon. 2017. “Spatial and Seasonal Variation of Avian Malaria Infections in Five Different Land Use Types within a Neotropical Montane Forest Matrix.” Landscape and Urban Planning 157: 151–60. https://www.sciencedirect.com/science/article/pii/S0169204616300925. Hochachka, WM y Dhondt, AA (2000). Disminución dependiente de la densidad de la abundancia de huéspedes como resultado de una nueva enfermedad infecciosa . Actas de la Academia Nacional de Ciencias , 97 , 5303–5306 Hochberg, M. E., Y. Michalakis, and T. De Meeus. 1992. “Parasitism as a Constraint on the Rate of Life‐history Evolution.” Journal of Evolutionary Biology 5(3): 491–504. Holand, H., H. Jensen, J. Tufto, H. Pärn, B.E. Sæther & T.H. Ringsby. 2015. Endoparasite infection has both short- and long-term negative effects on reproductive success of female house sparrows, as revealed by faecal parasitic egg counts. PLoS One 10: 1–12. Hudson, Peter J et al. 2002. “Ecology of Wildlife Diseases.” HUNTER, MALCOLM L., GEORGE L. JACOBSON, and THOMPSON WEBB. 1988. “Paleoecology and the Coarse‐Filter Approach to Maintaining Biological Diversity.” Conservation Biology 2(4): 375–85. Hutchinson, G. E. (1957). Cold Spring Harbor Symposia on Quantitative Biology 22 (0): 415-427. ISSN 0091-7451. doi:10.1101/sqb.1957.022.01.039. Consultado el 2 de diciembre de 2020. Illera, Juan Carlos, Guillermo López, Laura García-Padilla, and Ángel Moreno. 2017. “Factors Governing the Prevalence and Richness of Avian Haemosporidian Communities within and between Temperate Mountains.” PLoS ONE 12(9). Ilgūnas Mikas , Vaidas Palinauskas, Elena Platonova, Tatjana Iezhova and Gediminas Valkiūnas. 2019. The experimental study on susceptibility of common European songbirds to Plasmodium elongatum (lineage pGRW6), a widespread avian malaria parasite. 18:290 https://doi.org/10.1186/s12936-019-2926-4. Jiménez Judy Natalia, Carlos Enrique Muskus, Iván Darío Vélez. 2005. Diversidad genética de Plasmodium falciparum y sus implicaciones en la epidemiología de la malaria. Biomédica ;25:588-602. Jiménez-Peñuela, J., M. Ferraguti, J. Martínez-de la Puente, R. Soriguer & J. Figuerola. 2019. Urbanization and blood parasite infections affect the body condition of wild birds. Sci. Total John D. Edman , Herbert W. Kale, II., Host Behavior: Its Influence on the Feeding Success of Mosquitoes, Annals of the Entomological Society of America , volumen 64, número 2, 15 de marzo de 1971, páginas 513–516, https: //doi.org/10.1093/aesa/64.2.513 Jovani, Roger, and José L. Tella. 2006. “Parasite Prevalence and Sample Size: Misconceptions and Solutions.” Trends in Parasitology 22(5): 214–18. Kassambara, A. (2020). factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. Environ. 651: 3015–3022. Kelly, Tosha et al. 2016. “Seasonal Migration Distance Varies with Natal Dispersal and Predicts Parasitic Infection in Song Sparrows.” Behavioral Ecology and Sociobiology 70. KNOWLES, S C L, V PALINAUSKAS, and B C SHELDON. 2010. “Chronic Malaria Infections Increase Family Inequalities and Reduce Parental Fitness: Experimental Evidence from a Wild Bird Population.” Journal of Evolutionary Biology 23(3): 557–69. https://doi.org/10.1111/j.1420-9101.2009.01920.x. KNOWLES, SARAH C L et al. 2011. “Molecular Epidemiology of Malaria Prevalence and Parasitaemia in a Wild Bird Population.” Molecular Ecology 20(5): 1062–76. https://doi.org/10.1111/j.1365-294X.2010.04909.x. Knowles, Sarah C.L., Shinichi Nakagawa, and Ben C. Sheldon. 2009. “Elevated Reproductive Effort Increases Blood Parasitaemia and Decreases Immune Function in Birds: A Meta-Regression Approach.” Functional Ecology 23(2): 405–15. Krama, T., Krams, R., Cirule, D. et al. La intensidad de la infección por hemosporidios de parids se correlaciona positivamente con la proximidad a los cuerpos de agua, pero negativamente con la supervivencia del huésped. J Ornitol 156 , 1075–1084 (2015). https://doi.org/10.1007/s10336-015-1206-5 Krizanauskiene, A., Hellgren, O., Kosarev, V., Sokolov, L., Bensch, S., & Valkiunas, G. (2006). Variation in host specificity between species of avian hemosporidian parasites: evidence from parasite morphology and cytochrome B gene sequences. The Journal of parasitology, 92(6), 1319–1324. https://doi.org/10.1645/GE-873R.1 Kuo, Chih Horng, John P. Wares, and Jessica C. Kissinger. 2008. “The Apicomplexan Whole-Genome Phylogeny: An Analysis of Incongruence among Gene Trees.” Molecular Biology and Evolution 25(12): 2689–98. Landau I, J.M. Chavatte, W. Peters and A. Chabaud. 2010. The sub-genera of Avian Plasmodium. Parasite Volume 17, Number 1:3-7. https://doi.org/10.1051/parasite/2010171003. LaPointe, Dennis A, Carter T Atkinson, and Michael D Samuel. 2012. “Ecology and Conservation Biology of Avian Malaria.” Annals of the New York Academy of Sciences 1249(1): 211–26. https://doi.org/10.1111/j.1749-6632.2011.06431.x. Leander, B.S., R.E. Clopton & P.J. Keeling. 2003. Phylogeny of grenarines (Apicomplexa) as inferred from a small-subunit rDNA and β-tubulin, International Journal of Systematic and Evolutionary Microbiology. Lemon, Stanley M., and Institute of Medicine (U.S.). Forum on Microbial Threats. 2008. Vector-Borne Diseases : Understanding the Environmental, Human Health, and Ecological Connections : Workshop Summary. National Academies Press. Levine, N.D. 2018. The Protozoan Phylum Apicomplexa: Volume 2. PRESS, CRC. LEVIN, I.I., ZWIERS, P., DEEM, S.L., GEEST, E.A., HIGASHIGUCHI, J.M., IEZHOVA, T.A., JIMÉNEZ-UZCÁTEGUI, G., KIM, D.H., MORTON, J.P., PERLUT, N.G., RENFREW, R.B., SARI, E.H.R., VALKIUNAS, G. and Parker, P.G. (2013), Multiple Lineages of Avian Malaria Parasites (Plasmodium) in the Galapagos Islands and Evidence for Arrival via Migratory Birds. Conservation Biology, 27: 1366-1377. https://doi.org/10.1111/cobi.12127 Li, R., Xu, L., Bjørnstad, O.N., Liu, K., Song, T., Chen, A., Xu, B., Liu, Q., Stenseth, N.C., 2019. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Nat. Acad. Sci. U.S.A. 116, 3624–3629. Loehle, Craig. 1995. “Social Barriers to Pathogen Transmission in Wild Animal Populations.” Ecology 76(2): 326–35. https://doi.org/10.2307/1941192. Loiseau, Claire et al. 2010. “Spatial Variation of Haemosporidian Parasite Infection in African Rainforest Bird Species.” Journal of Parasitology 96(1): 21–29. https://doi.org/10.1645/GE-2123.1. Loiseau, C. , Harrigan, RJ , Robert, A. , Bowie, RC , Thomassen, HA , Smith, TB y Sehgal, RN ( 2012 ). Especialización del huésped y del hábitat de la malaria aviar en África . Ecología Molecular , 21 , 431 – 441 López VL, FV Costa, RA Rodrigues, É M Braga, M Pichorim, PA Moreira. 2020. La alta fidelidad define la consistencia temporal de las interacciones huésped-parásito en un ecosistema costero tropical. 10 (1): 16839. doi: 10.1038 / s41598-020-73563-6. Lutz, H. L., Hochachka, W. M., Engel, J. I., Bell, J. A., Tkach, V. V., Bates, J. M. Weckstein, J. D. (2015). Parasite prevalence corresponds to host life history in a diverse assemblage of Afrotropical birds and haemosporidian parasites. PLoS One, 10, e0121254–24. Lynton-Jenkins, J. G., Bründl, A. C., Cauchoix, M., Lejeune, L. A., Sallé, L., Thiney, A. C., Russell, A. F., Chaine, A. S., & Bonneaud, C. (2020). Contrasting the seasonal and elevational prevalence of generalist avian haemosporidia in co-occurring host species. Ecology and evolution, 10(12), 6097–6111. https://doi.org/10.1002/ece3.6355 Maia, João P, D James Harris, Salvador Carranza, and Elena Gómez-Díaz. 2014. “A Comparison of Multiple Methods for Estimating Parasitemia of Hemogregarine Hemoparasites (Apicomplexa: Adeleorina) and Its Application for Studying Infection in Natural Populations.” PLOS ONE 9(4): e95010-. https://doi.org/10.1371/journal.pone.0095010. Marquardt, William C. 2004. Biology of disease vectors. 2nd Edition. ISBN 9780080494067. Martínez-Alvarado, Dariel. 2019. “Prevalencia, Diversidad y Especificidad de hemosporidios Aviares En Un Gradiente Ambiental En El Neotrópico.” Tesis de Maestría. Universidad de Antioquia. Martínez-De La Puente, Josué et al. 2010. “The Blood Parasite Haemoproteus Reduces Survival in a Wild Bird: A Medication Experiment.” Biology Letters 6(5): 663–65. Martínez-de la Puente, Josué, Jenny C. Dunn, and Laura Gangoso. 2021. “Editorial: Factors Affecting Host Selection by Mosquitoes: Implications for the Transmission of Vector-Borne Pathogens.” Frontiers in Ecology and Evolution 9. Martín-Maldonado, B., Mencía-Gutiérrez, A., Andreu-Vázquez, C., Fernández, R., Pastor-Tiburón, N., Alvarado, A., Carrero, A., Fernández-Novo, A., Esperón, F., & González, F. (2023). A Four-Year Survey of Hemoparasites from Nocturnal Raptors (Strigiformes) Confirms a Relation between Leucocytozoon and Low Hematocrit and Body Condition Scores of Parasitized Birds. Veterinary sciences, 10(1), 54. https://doi.org/10.3390/vetsci10010054 Martin, T. E., Møller, A. P., Merino, S., & Clobert, J. (2001). Does clutch size evolve in response to parasites and immunocompetence?. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2071–2076. https://doi.org/10.1073/pnas.98.4.2071 Marzal, A., Muhammad, A., Rodriguez, L., Reviriego, M., Hermosell, I. G., Balbontin, J., Garcia-Longoria, L., de Lope, F., & Bensch, S. (2013). Co-infections by malaria parasites decrease feather growth but not feather quality in house martin. Journal of Avian Biology, 44(5), 437-444. https://doi.org/10.1111/j.1600-048X.2013.00178.x Marzal, Alfonso et al. 2011. “Diversity, Loss, and Gain of Malaria Parasites in a Globally Invasive Bird.” PLoS ONE 6(7). Marzal, Alfonso, Florentino de Lope, Carlos Navarro, and Anders Pape Møller. 2005. “Malarial Parasites Decrease Reproductive Success: An Experimental Study in a Passerine Bird.” Oecologia 142(4): 541–45. https://doi.org/10.1007/s00442-004-1757-2. Marzal, Alfonso, Sergio Magallanes, and Luz Garcia-Longoria. 2022. “Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour.” Biology 11(5). Matthews, Alix E et al. 2016. “Avian Haemosporidian Prevalence and Its Relationship to Host Life Histories in Eastern Tennessee.” Journal of Ornithology 157(2): 533–48. https://doi.org/10.1007/s10336-015-1298-y. Medeiros, Matthew C I, Robert E Ricklefs, Jeffrey D Brawn, and Gabriel L Hamer. 2015. “Plasmodium Prevalence across Avian Host Species Is Positively Associated with Exposure to Mosquito Vectors.” Parasitology 142(13): 1612–20. Merino, S., J. Moreno, J. J. Sanz, and E. Arriero. 2000. “Are Avian Blood Parasites Pathogenic in the Wild? A Medication Experiment in Blue Tits (Parus Caeruleus).” Proceedings of the Royal Society B: Biological Sciences 267(1461): 2507–10. Minchella, Dennis J, and Marilyn E Scott. 1991. “Parasitism: A Cryptic Determinant of Animal Community Structure.” Trends in Ecology & Evolution 6(8): 250–54. https://www.sciencedirect.com/science/article/pii/0169534791900715. Moens, Michaël A J, and Javier Pérez-Tris. 2016. “Discovering Potential Sources of Emerging Pathogens: South America Is a Reservoir of Generalist Avian Blood Parasites.” International Journal for Parasitology 46(1): 41–49. https://www.sciencedirect.com/science/article/pii/S0020751915002222. Møller, Anders Pape, and Johannes Erritzøe. 1998. “Host Immune Defence and Migration in Birds.” Evolutionary Ecology 12(8): 945–53. Møller AP Et al,. 2006. exposición posterior a la canción, características de la canción y riesgo de depredación, Behavioral Ecology , volumen 17, número 2, marzo/abril de 2006, páginas 155–163, https://doi.org/10.1093/beheco/arj010. Morand, S, Boris R Krasnov, and D T J (D. Timothy J.) Littlewood. 2015. Parasite Diversity and Diversification : Evolutionary Ecology Meets Phylogenetics. Cambridge, United Kingdom: Cambridge University Press. Muriel, J. 2020. “Ecophysiological Assessment of Blood Haemosporidian Infections in Birds.” Ecosistemas 29(2). Nilsson, E. et al. 2016. “Multiple Cryptic Species of Sympatric Generalists within the Avian Blood Parasite Haemoproteus Majoris.” Journal of evolutionary biology 29(9): 1812–26. Norris, Ken, and Matthew R Evans. 2000. “Ecological Immunology: Life History Trade-Offs and Immune Defense in Birds.” Behavioral Ecology 11(1): 19–26. Oakgrove, Khouanchy S et al. 2014. “Distribution, Diversity and Drivers of Blood-Borne Parasite Co-Infections in Alaskan Bird Populations.” International Journal for Parasitology 44(10): 717–27. https://www.sciencedirect.com/science/article/pii/S0020751914001465. Olias PM, Wegelin W, Zenker S, Freter A, Gruber D, Klopfleisch R. 2011. Avian malaria deaths in parrots. Eur Emerg Infect Dis.17:950–2. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933-938. Okanga, S., Cumming, G. S., & Hockey, P. A. (2013). Avian malaria prevalence and mosquito abundance in the Western Cape, South Africa. Malaria journal, 12, 370. https://doi.org/10.1186/1475-2875-12-370 Olsson-Pons, Sophie, Nicholas J. Clark, Farah Ishtiaq, and Sonya M. Clegg. 2015. “Differences in Host Species Relationships and Biogeographic Influences Produce Contrasting Patterns of Prevalence, Community Composition and Genetic Structure in Two Genera of Avian Malaria Parasites in Southern Melanesia.” Journal of Animal Ecology 84(4): 985–98. https://doi.org/10.1111/1365-2656.12354 Ortiz-Hector F. (2015). Malaria Aviar en los Chingolos (Zonotrichia capensis) del Parque Recreacional-Bosque Protector Jerusalem, Pichincha, Ecuador. http://repositorio.puce.edu.ec/handle/22000/8619. Padilla, D. P., Illera, J. C., Gonzalez-Quevedo, C., Villalba, M., & Richardson, D. S. (2017). Factors affecting the distribution of haemosporidian parasites within an oceanic island. International journal for parasitology, 47(4), 225–235. https://doi.org/10.1016/j.ijpara.2016.11.008 Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S. 2011. Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the co-infection on experimentally infected passerine birds. Exp Parasitol;127:527–33. Patz, JA, Graczyk, TK, Geller, N. y Vittor, AY (2000). Efectos del cambio ambiental en las enfermedades parasitarias emergentes . Revista Internacional de Parasitología , 30 , 1395–1405. Pérez-Tris, J., Dennis, Hasselquist, O. Hellgren, K. Asta, J. Waldenström & S. Bensch. 2005. What are malaria parasites? Trends Parasitol. 21: 209–211. Pérez-Tris, J. and Bensch, S. 2005. Dispersal increases local transmission of avian malarial parasites. Ecology Letters, 8: 838-845. https://doi.org/10.1111/j.1461-0248.2005.00788.x Pontes-Pedrajas, A, and Francisco Javier Sánchez Sánchez-Cañete. 2010. “La Comprensión de Conceptos de Ecología y Sus Implicaciones Para La Educación Ambiental.” Poulin, R. & S. Morand. 2000. The Diversity of Parasites. Q. Rev. Biol. 75: 277–293. Poulin., R. (2006). Evolutionary Ecology of Parasites. Princeton University Press. ISBN 978-0-691-12085-0. Poulin, R., B.R. Krasnov & D. Mouillot. 2011. Host specificity in phylogenetic and geographic space. Trends Parasitol. 27: 355–361. Poulin, Robert et al. 2012. “Migration as an Escape from Parasitism in New Zealand Galaxiid Fishes.” Oecologia 169(4): 955–63. https://doi.org/10.1007/s00442-012-2251-x. Pulgarín-R, Paulo C. et al. 2018. “Host Species, and Not Environment, Predicts Variation in Blood Parasite Prevalence, Distribution, and Diversity along a Humidity Gradient in Northern South America.” Ecology and Evolution 8(8): 3800–3814. QGIS.org. 2019. “QGIS Geographic Information System.” R. Core Team. 2018. “R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL Https://Www.R-Project.Org/.” Ricklefs, Robert E. et al. 2014. “Species Formation by Host Shifting in Avian Malaria Parasites.” Proceedings of the National Academy of Sciences of the United States of America 111(41): 14816–21. Ricklefs, R.E., Medeiros, M., Ellis, V.A., Svensson-Coelho, M., Blake, J.G., Loiselle, B.A., Soares, L., Fecchio, A., Outlaw, D., Marra, P.P., Latta, S.C., Valkiūnas, G., Hellgren, O. and Bensch, S. (2017), Avian migration and the distribution of malaria parasites in New World passerine birds. J. Biogeogr., 44: 1113-1123. https://doi.org/10.1111/jbi.12928. Ricklefs, Robert E., and Sylvia M. Fallon. 2002. “Diversification and Host Switching in Avian Malaria Parasites.” Proceedings of the Royal Society B: Biological Sciences 269(1494): 885–92. Rivera-Gutiérrez H.F., Lentijo-Jimenez G.M., Chinome-Torres G.A., Llano-Mejía J., Martínez-Alvarado D., González-Quevedo C., Gómez-Ahumada M.F., Parra J.L. (2018). Aves del cañón del río Cauca. Guía ilustrada de la avifauna en el área de incidencia del proyecto Hidroituango. Rivero, J., D.A. Id, F. Castillo, A. Moreno, L. Browne, S.T. Walter, J. Karubian & E. Bonaccorso. 2018. Patterns of avian haemosporidian infections vary with time , but not habitat , in a fragmented Neotropical landscape 1–18. Roberts, L.S.J.J.J. 2000. Gerald D. Schmidt & Larry S. Roberts’ foundations of parasitology. Rodrigues, Raquel A. et al. 2021. “Host Migration and Environmental Temperature Influence Avian Haemosporidians Prevalence: A Molecular Survey in a Brazilian Atlantic Rainforest.” PeerJ. Rodriguez, Marina D., Paul F. Doherty, Antoinette J. Piaggio, and Kathryn P. Huyvaert. 2021. “Sex and Nest Type Influence Avian Blood Parasite Prevalence in a High-Elevation Bird Community.” Parasites and Vectors 14(1). Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. ISBN 978-81-315-0104-7. Santiago-Alarcon, Diego et al. 2016. “Avian Haemosporidian Parasites in an Urban Forest and Their Relationship to Bird Size and Abundance.” Urban Ecosystems 19(1): 331–46. https://doi.org/10.1007/s11252-015-0494-0. Santiago-Alarcon, Diego, and Alfonso Marzal. 2020. Avian Malaria and Related Parasites in the Tropics : Ecology, Evolution and Systematics. Cham, Switzerland: Springer. Santiago-Alarcon, Diego, Vaidas Palinauskas, and Hinrich Martin Schaefer. 2012. “Diptera Vectors of Avian Haemosporidian Parasites: Untangling Parasite Life Cycles and Their Taxonomy.” Biological Reviews 87(4): 928–64. https://doi.org/10.1111/j.1469-185X.2012.00234.x. Satterfield, Dara A., Francis X. Villablanca, John C. Maerz, and Sonia Altizer. 2016. “Migratory Monarchs Wintering in California Experience Low Infection Risk Compared to Monarchs Breeding Year-Round on Non-Native Milkweed.” In Integrative and Comparative Biology, Oxford University Press, 343–52. Schliep K (2011). "phangorn: análisis filogenético en R". Bioinformática , 27 (4), 592–593. doi:10.1093/bioinformatics/btq706 . Schliep, Klaus, Potts, J. A, Morrison, A. D, Grimm, W. G (2017). "Entrelazamiento de redes y árboles filogenéticos". Métodos en ecología y evolución , 8 (10), 1212–1220. Sehgal R. N. (2015). Manifold habitat effects on the prevalence and diversity of avian blood parasites. International journal for parasitology. Parasites and wildlife, 4(3), 421–430. https://doi.org/10.1016/j.ijppaw.2015.09.001 Sehgal, R.N.M., W. Buermann, R.J. Harrigan, C. Bonneaud, C. Loiseau, A.C. Chasar, I. Sepil, G. Valkiūnas, T. a Iezhova, S. Saatchi & T.B. Smith. 2011. Spatially explicit predictions of blood parasites in a widely distributed African rainforest bird. Proc. R. Soc. B Biol. Sci. 278: 1025–1033. Schulenburg, Hinrich, Joachim Kurtz, Yannick Moret, and Michael T Siva-Jothy. 2008. “Introduction. Ecological Immunology.” Philosophical Transactions of the Royal Society B: Biological Sciences 364(1513): 3–14. https://doi.org/10.1098/rstb.2008.0249. Scordato, Elizabeth S.C., and Melissa R. Kardish. 2014. “Prevalence and Beta Diversity in Avian Malaria Communities: Host Species Is a Better Predictor than Geography.” Journal of Animal Ecology 83(6): 1387–97. Slowinski, Samuel P et al. 2018. “Sedentary Songbirds Maintain Higher Prevalence of Haemosporidian Parasite Infections than Migratory Conspecifics during Seasonal Sympatry.” PLOS ONE 13(8): e0201563-. https://doi.org/10.1371/journal.pone.0201563. Sorci, G., Møller, AP y Clobert, J. (1998), El dicromatismo del plumaje de las aves predice el éxito de la introducción en Nueva Zelanda. Revista de Ecología Animal, 67: 263-269. https://doi.org/10.1046/j.1365-2656.1998.00199.x Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. The American naturalist, 171(6), 755–776. https://doi.org/10.1086/587526 Šujanová, Alžbeta, and Radovan Václav. 2022. “Phylogeographic Patterns of Haemoproteid Assemblages of Selected Avian Hosts: Ecological and Evolutionary Implications.” Microorganisms 10(5). Svensson-Coelho, M., B.A. Loiselle, J.G. Blake & R.E. Ricklefs. 2016. Resource predictability and specialization in avian malaria parasites. Mol. Ecol. 0: 4377–4391. Svensson-Coelho, M. , Blake, JG, Loiselle, BA, Penrose, AS, Parker, PG y Ricklefs, RE. 2013. Diversidad, prevalencia y especificidad de hospederos de Plasmodium y Haemoproteus aviares en un ensamble del Amazonas occidental . Monografías ornitológicas , 76 (1), 1-47. https://doi.org/10.1525/om.2013.76.1.1 Sweet, Andrew D et al. 2018. “Host and Parasite Morphology Influence Congruence between Host and Parasite Phylogenies.” International Journal for Parasitology 48(8): 641–48. https://www.sciencedirect.com/science/article/pii/S0020751918300596. Synek, Petr, Pavel Munclinger, Tomáš Albrecht, and Jan Votýpka. 2013. “Avian Haemosporidians in Haematophagous Insects in the Czech Republic.” Parasitology Research 112(2): 839–45. https://doi.org/10.1007/s00436-012-3204-3. Tamayo-Quintero, Juliana. 2022. “hemosporidios aviares: Desde la composición de la comunidad avifaunística a la ecología del paisaje en bosques de protección de embalses del oriente de antioquia.” Tesis de Maestría. Universidad de Antioquia. Tomás G., Merino S., Martínez-De La Puente J., Moreno J., Morales J., Lobato E. 2008. Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia ;156:305–312. doi: 10.1007/s00442-008-1001-6. Thompson. (2005). “The Ecology and Evolution of Ant-Plant Interactions.” Ecoscience 15(2): 290–91. https://doi.org/10.2980/1195-6860(2008)15[290b:TEAEOA]2.0.CO. Tobias, Joseph A. et al. 2022. “AVONET: Morphological, Ecological and Geographical Data for All Birds.” Ecology Letters 25(3): 581–97. Tomás, G. et al. 2007. “Impact of Blood Parasites on Immunoglobulin Level and Parental Effort: A Medication Field Experiment on a Wild Passerine.” Functional Ecology 21(1): 125–33. Tucker, C. J., and J.R.G. Townshend. 1985. “African Land- Cover Classification Using Satellite Data.” Science 227: 369–75. Tung Ho, Lam Si, and Cécile Ané. 2014. “A Linear-Time Algorithm for Gaussian and Non-Gaussian Trait Evolution Models.” Systematic Biology 63(3): 397–408. Tyers, M. 2017. “Riverdist: River Network Distance Computation and Applications. R Package Version 0.14. 0.” Valkiunas, Gediminas. 2004. Avian Malaria Parasites and Other Haemosporidia. CRC press. Valkiūnas, Gediminas et al. 2013. “Abortive Long-Lasting Sporogony of Two Haemoproteus Species (Haemosporida, Haemoproteidae) in the Mosquito Ochlerotatus Cantans, with Perspectives on Haemosporidian Vector Research.” Parasitology Research 112(6): 2159–69. https://doi.org/10.1007/s00436-013-3375-6. Valkiūnas, Gediminas, and Tatjana A. Iezhova. 2022. “Keys to the Avian Haemoproteus Parasites (Haemosporida, Haemoproteidae).” Malaria Journal 21(1). Valkiūnas, Gediminas, Tadas Z̆ic̆kus, Anatoly P Shapoval, and Tatjana A Iezhova. 2006. “Effect of Haemoproteus Belopolskyi (Haemosporida: Haemoproteidae) on Body Mass of the Blackcap Sylvia Atricapilla.” Journal of Parasitology 92(5): 1123–25. https://doi.org/10.1645/GE-3564-RN.1. Valkiūnas, G., Iezhova, TA. (2016). Claves para los parásitos de la malaria aviar. Malar J 17, 212. https://doi.org/10.1186/s12936-018-2359-5 Valkiūnas, G., Iezhova, TA. (2016). Claves para los parásitos de la malaria aviar. Malar J 17, 212. https://doi.org/10.1186/s12936-018-2359-5 Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Williamson, Jessie L et al. 2019. “Ecology, Not Distance, Explains Community Composition in Parasites of Sky-Island Audubon’s Warblers.” International Journal for Parasitology 49(6): 437–48. https://www.sciencedirect.com/science/article/pii/S0020751919300517. Wood, MJ , Cosgrove, CL , Wilkin, TA , Knowles, SCL , Day, KP & Sheldon, BC. 2007. Variación dentro de la población en la prevalencia y distribución de linaje de malaria aviar en herrerillos azules, Cyanistes caeruleus . Ecología Molecular , 16 , 3263 – 3273 . Yan J., Broggi J., Martínez-De La Puente J., Gutiérrez-López R., Gangoso L., Soriguer R., Figuerola J. 2018. ¿Does bird metabolic rate influence mosquito feeding preference?. Parasites Vectors ; 11 :110. doi: 10.1186/s13071-018-2708-9. Yan, Jiayue et al. 2017. “Avian Phenotypic Traits Related to Feeding Preferences in Two Culex Mosquitoes.” The Science of Nature 104(9): 76. https://doi.org/10.1007/s00114-017-1497-x. Yan, J., Gangoso, L., Ruiz, S., Soriguer, R., Figuerola, J., & Martínez-de la Puente, J. (2021). Understanding host utilization by mosquitoes: determinants, challenges and future directions. Biological reviews of the Cambridge Philosophical Society, 96(4), 1367–1385. https://doi.org/10.1111/brv.12706. Zuluaga, Walter Alonso et al. 2012. “Vigilancia de Insectos de Importancia En Salud Pública Durante La Construcción de Los Proyectos Hidroeléctricos Porce II y Porce III, Antioquia, Colombia, 1990-2009.” Biomédica 32(3): 321–32. |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
105 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.coverage.box.none.fl_str_mv |
Lat: 07 04 00 N degrees minutes Lat: 7.0667 decimal degrees Long: 075 45 00 W degrees minutes Long: -75.7500 decimal degrees Lat: 07 10 00 N degrees minutes Lat: 7.1667 decimal degrees Long: 075 25 00 W degrees minutes Long: -75.4167 decimal degrees |
| dc.coverage.tgn.none.fl_str_mv |
http://vocab.getty.edu/page/tgn/1023841 http://vocab.getty.edu/page/tgn/1024056 |
| dc.coverage.region.none.fl_str_mv |
Ituango Valdivia Toledo Briceño |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Biología |
| dc.publisher.department.none.fl_str_mv |
Instituto de Biología |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/91b7971f-c311-4b1b-b6f4-f021bc12f64c/download https://bibliotecadigital.udea.edu.co/bitstreams/f0139994-0ff0-45f1-ab7d-ca78a0376626/download https://bibliotecadigital.udea.edu.co/bitstreams/4e67ac87-2b36-4e17-a4fe-8496d8ea019c/download https://bibliotecadigital.udea.edu.co/bitstreams/8ac29c5b-177a-4835-b81c-05b33214f0a0/download https://bibliotecadigital.udea.edu.co/bitstreams/7c2f3283-4e4e-4b9f-92c3-1363a896d591/download |
| bitstream.checksum.fl_str_mv |
b76e7a76e24cf2f94b3ce0ae5ed275d0 6ab080ef90d62006683a02aee805f32c 5643bfd9bcf29d560eeec56d584edaa9 f3ea3151fa333803b4b2f9d7cf5be96c 8c3d6386dc52be8b7c688dd0ac6f7ef3 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052116682997760 |
| spelling |
Rivera Gutiérrez, Héctor FabioGonzález Quevedo, CatalinaPérez Tris, JavierRúa Uribe, Guillermo LeónPinzón Cárdenas, Paula AlejandraEcología y Evolución de Vertebrados2025-05-15T15:39:47Z2023Pinzón-Cárdenas, P.A. (2023). Factores que influyen en la probabilidad de infección de las especies de aves por Hemosporidios aviares [Tesis de maestría]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/45933El estudio de las interacciones bióticas es importante para comprender la ecología evolutiva de las especies. Respecto a estas, el parasitismo por hemosporidios en aves es una interacción que genera presiones evolutivas sobre las comunidades de aves y juega un papel importante en su estructuración. Los factores que tienen influencia sobre la probabilidad de infección por Hemosporidios de las especies de hospederos en estos sistemas han sido de interés en las últimas décadas; se sabe que algunas características que describen la historia de vida o morfología de las especies hospederas pueden influir en su probabilidad de infección por hemosporidios aviares, además, que las variables ambientales y climáticas suelen ser factores clave en que se desarrolle esta interacción. Este estudio se realizó para determinar los factores que influyen en la probabilidad de infección de las especies por hemosporidios aviares. Se dividió en dos capítulos, en el primero se buscó determinar los factores ecológicos y morfológicos de las especies que influyen en la probabilidad de infección de éstas por hemosporidios aviares. En el segundo se buscó conocer si las características externas a las especies, como los factores ambientales y climáticos y la especificidad de los linajes de hemosporidios, tienen influencia en esta probabilidad de infección. Para determinar esto, se usaron diagnósticos de hemosporidios aviares de cuatro áreas de influencia de embalses de Antioquia (Playas, Porce II, Porce III y el proyecto hidroeléctrico Ituango en el Cañón del Rio Cauca). Por otra parte, para las especies de aves presentes se realizó recopilación de información de variables Ecológicas (Migración y Estrato), Morfológicas (Longitud del tarso, Peso, Dimorfismo sexual) y de coloración (Colorido y dicromatismo sexual), además se calculó un índice de generalización del tipo de hábitat utilizado por cada una de las especies. Posteriormente, se determinaron localidades dadas por los tipos de bosque en el Cañón del río Cauca y se realizó una caracterización ambiental para cada localidad a partir de 18 variables ambientales, también se calculó un índice de especificidad para los linajes de hemosporidios encontrados. Se abordó la probabilidad de infección de las especies usando las métricas de prevalencia y la presencia de la infección. A partir de esto, se usó un novedoso análisis comparativo filogenéticamente a partir de un phylo-glm que integró todas las características de las especies para la búsqueda del mejor modelo. También se usó un enfoque de modelo lineal generalizado mixto con la especie como factor aleatorio, para integrar todos los factores ambientales en la búsqueda del modelo que mejor se ajusta a la probabilidad de infección de las especies. Y se usó una regresión lineal para determinar si la especificidad de los linajes tiene relación con la prevalencia de las especies. Los resultados obtenidos en el primer capítulo confirman que algunas características de las especies de aves tienen un efecto sobre su probabilidad de infección. Especies que son generalistas, tienen migración boreal y mayor longitud del tarso, tienen mayor probabilidad de ser infectadas por hemosporidios. Esto se debe posiblemente a que son características que aumentan la exposición a mayor cantidad de hemosporidios y vectores de la infección. Además, características como el dicromatismo y el colorido tienen una tendencia no significativa en esta probabilidad. Adicionalmente, los resultados del segundo capítulo muestran que para este modelo de estudio no existe influencia significativa de la variación ambiental y climática, ni de la especialización de los linajes de hemosporidios que infectan a las especies en estos sitios, sobre la probabilidad de infección de las especies, confirmando que el efecto principal de la variación en la prevalencia está dado por los hospederos. Estos resultados aportan información valiosa para conocer la dinámica de las interacciones entre hemosporidios y sus hospederos aviares en el trópico, así como para predecir los factores que hacen a las especies más susceptibles a estas infecciones, teniendo en cuenta que pueden tener consecuencias negativas para las comunidades de aves.The study of biotic interactions is important to understand the evolutionary ecology of species. Regarding these, parasitism by hemosporidia in birds is an interaction that generates evolutionary pressures on bird communities and plays an important role in their structuring. The factors that influence the probability of infection by Hemosporidia of the host species in these systems have been of interest in recent decades; It is known that some characteristics that describe the life history or morphology of the host species can influence their probability of infection by avian hemosporidia, in addition, that environmental and climatic variables are usually key factors in which this interaction develops. This study was carried out to determine the factors that influence the probability of infection of the species by avian hemosporidia. It was divided into two chapters, the first sought to determine the ecological and morphological factors of the species that influence the probability of infection by avian hemosporidia. In the second, we sought to find out if the characteristics external to the species, such as environmental and climatic factors and the specificity of the hemosporidial lineages, have an influence on this probability of infection. To determine this, diagnoses of avian hemosporidia from four areas of influence of Antioquia reservoirs (Playas, Porce II, Porce III and the Ituango hydroelectric project in the Cañón del Rio Cauca) were used. On the other hand, for the bird species present, information was collected on Ecological variables (Migration and Stratum), Morphological (Tarsus length, Weight, Sexual dimorphism) and coloration (Color and sexual dichromatism), in addition a generalization of the type of habitat index was calculated and used by each of the species. Subsequently, localities given by the forest types in the Cauca River Canyon were determined and an environmental characterization was carried out for each locality from 18 environmental variables, a specificity index was also calculated for the lineages of hemosporidia found. The probability of infection of the species was approached using the metrics of prevalence and the presence of infection. From this, a novel phylogenetically comparative analysis was used from a phylo-glm that integrated all the characteristics of the species for the search of the best model. A mixed generalized linear model approach was also used with species as a random factor, to integrate all environmental factors in the search for the model that best fits the probability of infection of the species. And a 11 linear regression was used to determine if the specificity of the lineages is related to the prevalence of the species. The results obtained in the first chapter confirm that some characteristics of bird species influence their probability of infection. Species that are generalists, have boreal migration and greater tarsus length, are more likely to be infected by hemosporidia. This is possibly since they are characteristics that increase exposure to a greater number of hemosporidia and vectors of infection. In addition, features such as dichromatism and colorfulness have a non-significant trend in this probability. Additionally, the results of the second chapter show that for this study model there is no significant influence of environmental and climatic variation, nor of the specialization of the lineages of hemosporidia that infect the species in these sites, on the probability of infection of the species, confirming that the main effect of the variation in prevalence is given by the hosts. These results provide valuable information to understand the dynamics of the interactions between hemosporidia and their avian hosts in the tropics, as well as to predict the factors that make the species more susceptible to these infections, considering that they can have negative consequences for the bird’s communities.Malaria aviarCOL0147267MaestríaMagíster en Biología105 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en BiologíaInstituto de BiologíaMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Aves - ParásitosBirds - ParasitesAves - InfeccionesBirds - InfectionsComunidades de avesBird communitiesAves - EcologíaBirds - EcologyAves - EvoluciónBirds - EvolutionAves - HábitatBirds - HabitatHaemosporidaPrevalenciaPrevalenceMalaria aviarAvian malariaParasitismoParasitismRelación huésped parásitoHost parasite relationshttp://aims.fao.org/aos/agrovoc/c_16686http://aims.fao.org/aos/agrovoc/c_5577http://aims.fao.org/aos/agrovoc/c_11620http://id.loc.gov/authorities/subjects/sh86003644http://id.loc.gov/authorities/subjects/sh2003011141http://id.loc.gov/authorities/subjects/sh2004014360http://id.loc.gov/authorities/subjects/sh2005020407http://id.loc.gov/authorities/subjects/sh85014316http://id.loc.gov/authorities/subjects/sh2006005918https://id.nlm.nih.gov/mesh/D016787https://id.nlm.nih.gov/mesh/D015995ODS 15: Vida de ecosistemas terrestres. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidadFactores que influyen en la probabilidad de infección de especies de aves por hemosporidios aviaresTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAguiar De Souza Penha, Víctor et al. 2023. “Host Life-History Traits Predict Haemosporidian Parasite Prevalence in Tanagers (Aves: Thraupidae).” Parasitology 150(1): 32–41.Alarcón-Elbal, P M et al. LOS CULÍCIDOS (DIPTERA, CULICIDAE) DEL VALLE MEDIO DEL EBRO I: LA RIOJA (NORTE DE ESPAÑA).Altizer, Sonia, Drew Harvell, and Elizabeth Friedle. 2003. “Rapid Evolutionary Dynamics and Disease Threats to Biodiversity.” Trends in Ecology & Evolution 18(11): 589–96.Arriero, E., Moreno, J., Merino, S., & Martínez, J. (2008). Habitat effects on physiological stress response in nestling blue tits are mediated through parasitism. Physiological and biochemical zoology : PBZ, 81(2), 195–203. https://doi.org/10.1086/524393Asghar, Muhammad et al. 2015. “Hidden Costs of Infection: Chronic Malaria Accelerates Telomere Degradation and Senescence in Wild Birds.” Science (New York, N.Y.) 347: 436–38.Atkinson CT, van Riper C. 1991. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. In: Loye JE, Zuk M, editors. Bird-parasite interactions: ecology, evolution, and behavior. Oxford: Oxford University Press. p. 19–48.Atkinson, Carter T, Robert J Dusek, Karen L Woods, and William M Iko. 2000. 36 Journal of Wildlife Diseases PATHOGENICITY OF AVIAN MALARIA IN EXPERIMENTALLY-INFECTED HAWAII AMAKIHI. http://meridian.allenpress.com/jwd/article-pdf/36/2/197/2235963/0090-3558-36_2_197.pdf.Bahamonde-Daniela C. (2014). Prevalencia de malaria aviar en las aves más comunes del Parque Recreacional - Bosque Protector Jerusalén, Pichincha, Ecuador. Tesis trabajo de grado, Pontificia universidad católica del ecuador. Ecuador.Barton, Kamil. 2020. “Mu’min: Multi-Model Inference.” https://cran.r-project.org/package=MuMIn.Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects Models Using Lme4.” Journal of Statistical Software 67(1): 1–48. https://www.jstatsoft.org/index.php/jss/article/view/v067i01.BEAUDOIN, RICHARD L, JAMES E APPLEGATE, DAVID E DAVIS, and ROBERT G McClean. 1971. “A Model for The Ecology of Avian Malaria*.” Journal of Wildlife Diseases 7(1): 5–13. https://doi.org/10.7589/0090-3558-7.1.5.Belo NO, Pinheiro RT, Reis ES, Ricklefs RE, Braga ÉM (2011) Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil. PLOS ONE 6(3): e17654. https://doi.org/10.1371/journal.pone.0017654Bensch, S., J. Perez-Tris, J. Waldenstrom & O. Hellgren. 2004. ¿Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution (N. Y). 58: 1617–1621.Bensch, S., M. Stjernman, D. Hasselquist, O. Ostman, B. Hansson, H. Westerdahl & R.T. Pinheiro. 2000. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. B Biol. Sci. 267: 1583–1589.Bensch, S., O. Hellgren & J. Pérez-Tris. 2009. Malavi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 9: 1353–1358.Bernotienė, R., Žiegytė, R., Vaitkutė, G. et al,. (2019). Identificación de una nueva especie vector de hemoproteides aviares, con descripción de metodología para la determinación de vectores naturales de parásitos hemosporidianos. Vectores de parásitos 12, 307. https://doi.org/10.1186/s13071-019-3559-8.Bichet, C. , Sorci, G. , Robert, A. , Julliard, R. , Lendvai, AZ , Chastel, O. , … Loiseau, C. ( 2014 ). Epidemiología de la infección por Plasmodium relictum en el gorrión común . Revista de Parasitología , 100 , 59 – 65Birds of the World (2022). Edited by S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg. Cornell Laboratory of Ornithology, Ithaca, NY, USA. https://birdsoftheworld.org/bow/home.Birdtree.org 2022. Website https://birdtree.org/.Blüthgen, N., Menzel, F. and Blüthgen, N. (2006) Measuring specialization in species interaction networks. BMC Ecology 6, 12.Booth, Trevor H. 2022. “Checking Bioclimatic Variables That Combine Temperature and Precipitation Data before Their Use in Species Distribution Models.” Austral Ecology 47(7): 1506–14.Bradley, Catherine A, and Sonia Altizer. 2005. “Parasites Hinder Monarch Butterfly Flight: Implications for Disease Spread in Migratory Hosts.” Ecology Letters 8(3): 290–300. https://doi.org/10.1111/j.1461-0248.2005.00722.x.Braga EM, Silveira P, Belo NO, Valkiūnas G. 2011. Avances recientes en el estudio de la malaria aviar: una vision general con énfasis en la distribución de Plasmodium spp en Brasil. Mem Inst Oswaldo Cruz. 106: 3–11.Burnham, Kenneth P., and David R. Anderson. 2002. Model Selection and Mulmodel Inference.Butler, M. A., & King, A. A. (2004). Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution. The American naturalist, 164(6), 683–695. https://doi.org/10.1086/426002.Castaño-Vázquez F., Merino S., Cuezva S., Sánchez-Moral S. 2020. Gases de nido como señal de atracción potencial para insectos voladores mordedores y otros ectoparásitos de aves que anidan en cavidades. Frente. Ecol. Evol; 8 :258. doi: 10.3389/fevo.2020.00258.Castro Johana , Guillermo Castillo, Jorge Salazar. 2016. INFLUENCE OF THE TEMPERATURE ON THE LIFE CYCLE OF THE NECROPHAGOUS SPECIE Compsomyiops arequipensis MELLO, 1968 (DIPTERA: CALLIPHORIDAE). Rev. Asoc. Col. Cienc.(Col.); 28: 105-116.Chagas, Carolina Romeiro Fernández, Josef Harl, and Gediminas Valkiūnas. 2021. “Co-Infections of Plasmodium Relictum Lineages PSGS1 and PGRW04 Are Readily Distinguishable by Broadly Used PCR-Based Protocols, with Remarks on Global Distribution of These Malaria Parasites.” Acta Trópica 217: 105860. https://www.sciencedirect.com/science/article/pii/S0001706X21000395.Chang Van-David. (2019). Factores que afectan la prevalencia de parásitos hemosporidios en una población silvestre del gorrión de collar rufo, Zonotrichia capensis. http://repositorio.upch.edu.pe/handle/upch/7013.Chang van-David and Katya Balta Abadie. Lima. 2017. UNIVERSIDAD PERUANA CAYETANO HEREDIA. Ciencias Y Filosofía, Facultad DE, David Alfonso Tesis Para Optar El Título de Licenciado En Biología.Chasar, A., Loiseau, C., Valkiūnas, G., Iezhova, T., Smith, T. B., & Sehgal, R. N. (2009). Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Molecular ecology, 18(19), 4121–4133. https://doi.org/10.1111/j.1365-294X.2009.04346.xClark Nicolás J., Sonya M Clegg, Marcos R Lima. 2014. Una revision de la diversidad global en hemosporidios aviares (Plasmodium y Haemoproteus: Haemosporida): nuevos conocimientos a partir de datos moleculares. 44 (5): 329-38. Doi: 10.1016 / j.ijpara.2014.01.004.Clark, Nicholas J., Konstans Wells, Dimitar Dimitrov, and Sonya M. Clegg. 2016. “Co-Infections and Environmental Conditions Drive the Distributions of Blood Parasites in Wild Birds.” Journal of Animal Ecology 85(6): 1461–70.Cody, Martin L, and Jared M Diamond. 1975. Ecology and Evolution of Communities / Martin L. Cody and Jared M. Diamond, Editors. Cambridge, Mass: Belknap Press.Collins Julia and Abdelal Nadia. 2018. Spread of Disease, https://calculate.org.au/wpcontent/uploads/sites/15/2018/10/spread-of-disease.pdfCombes, Claude, Isaura de Buron, and Vincent Connors. 2002. “Parasitism: The Ecology and Evolution of Intimate Interactions.” Bibliovault OAI Repository, the University of Chicago Press.Combes, Claude. (2005). The Art of Being a Parasite. The University of Chicago Press. ISBN 978-0-226-11438-5.Cooney, Christopher R. et al. 2022. “Latitudinal Gradients in Avian Colorfulness.” Nature Ecology and Evolution 6(5): 622–29.Cornuault, J., Khimoun, A., Harrigan, R. J., Bourgeois, Y. X., Milá, B., Thébaud, C., & Heeb, P. (2013). The role of ecology in the geographical separation of blood parasites infecting an insular bird. Journal of Biogeography, 40(7), 1313-1323.Cozzarolo, Camille Sophie et al. 2019. “Sex-Biased Parasitism in Vector-Borne Disease: Vector Preference?” Plops ONE 14(5).Crawley, Michael J. 2013. “Statistical Modelling.” In The R Book, John Wiley & Sons, Ltd, 388–448.Dale, James et al. 2015. “The Effects of Life History and Sexual Selection on Male and Female Plumage Coloration.” Nature 527(7578): 367–70.De Angeli Dutra, Daniela, Antoine Filion, et al. 2021. “Migrant Birds Disperse Haemosporidian Parasites and Affect Their Transmission in Avian Communities.” Oikos 130(6): 979–88.De Angeli Dutra, Daniela, Nayara Belo, and Erika M. Braga. 2022. “Prevalence and Richness of Malaria and Malaria-like Parasites in Wild Birds from Different Biomes in South America.” Peer 10.De Angeli Dutra, Daniela, Alan Fecchio, Érika Martins Braga, and Robert Poulin. 2021. “Haemosporidian Taxonomic Composition, Network Centrality and Partner Fidelity between Resident and Migratory Avian Hosts.” Oecologia 197(2): 501–9. https://doi.org/10.1007/s00442-021-05031-5.de Angeli Dutra, D., Poulin, R., & Ferreira, F. C. (2022). Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution. Parasitology, 149(13), 1667–1678. https://doi.org/10.1017/S0031182022001378Delhey, K. The colour of an avifauna: A quantitative analysis of the colour of Australian birds. Sci Rep 5, 18514 (2016). https://doi.org/10.1038/srep18514Devictor, Vincent et al. 2010. “Defining and Measuring Ecological Specialization.” Journal of Applied Ecology 47(1): 15–25.Dorazio, R. M., & Connor, E. F. (2014). Estimating abundances of interacting species using morphological traits, foraging guilds, and habitat. PloS one, 9(4), e94323. https://doi.org/10.1371/journal.pone.0094323.Dormann, C.F. (2011) How to be a specialist? Quantifying specialisation in pollination networks. Network Biology 1, 1–20Dormann, C.F., Fründ, J., Blüthgen, N., and Gruber, B. (2009) Indices, graphs and null models: analysing bipartite ecological networks. The Open Ecology Journal 2, 7–24.Escobar, Luis E, Andrés Lira-Noriega, Gonzalo Medina-Vogel, and A Townsend Peterson. Potential for Spread of the White-Nose Fungus (Pseudogymnoascus Destructans) in the Americas: Use of Maxent and Niche A to Assure Strict Model Transference.Fajardo-Gutiérrez Arturo. (2017). Medición en epidemiología: prevalencia, incidencia, riesgo, medidas de impacto. Rev. alerg. Méx. vol.64 no.1 Ciudad de México ene./mar. 2017. http://dx.doi.org/10.29262/ram.v64i1.252.Fallon, SM, Bermingham, E. y Ricklefs, RE (2003). Revisión de los efectos de isla y taxón en el parasitismo: Malaria aviar en las Antillas Menores . Evolución , 57 , 606–615.Fecchio, Alan et al. 2022. “Host Foraging Behavior and Nest Type Influence Prevalence of Avian Haemosporidian Parasites in the Pantanal.” Parasitology Research 121(5): 1407–17. https://doi.org/10.1007/s00436-022-07453-3.Ferraguti, Martina et al. 2013. “Avian Plasmodium in Culex and Ochlerotatus Mosquitoes from Southern Spain: Effects of Season and Host-Feeding Source on Parasite Dynamics.” Plops ONE 8(6).Ferraguti, M., Martínez-de la Puente, J., Bensch, S., Roiz, D., Ruiz, S., Viana, D. S., Soriguer, R. C., & Figuerola, J. (2018). Ecological determinants of avian malaria infections: An integrative analysis at landscape, mosquito and vertebrate community levels. The Journal of animal ecology, 87(3), 727–740.Fick, S.E, and R.J Hijmans. 2017. “Worldclim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology.Fitzmaurice, G. M., Laird, N. M., & Ware, J. H. (2011). Applied Longitudinal Analysis. Wiley.Fritzsche McKay A, Hoye BJ. Are Migratory Animals Superspreaders of Infection? Integr Comp Biol. 2016 Aug;56(2):260-7. doi: 10.1093/icb/icw054. PMID: 27462034.Fuentes-Perla. (2008). Hemoparásitos de Guacamaya, loros, Pericas, totoras y tucanes del Centro de rehabilitación de fauna Silvestre arcas, Petén, Guatemala. Facultad De Medicina Veterinaria Y Zootecnia Escuela De Veterinaria Rehabilitation De Fauna Silvestre Arcas. Guatemala.Fuller, T., Bensch, S., Müller, I. et al. La ecología de las enfermedades infecciosas emergentes en las aves migratorias: una evaluación del papel del cambio climático y prioridades para futuras investigaciones. EcoSalud 9 , 80–88 (2012). https://doi.org/10.1007/s10393-012-0750-1Galen, Spencer C, and Christopher C Witt. 2014. “Diverse Avian Malaria and Other Haemosporidian Parasites in Andean House Wrens: Evidence for Regional Co-Diversification by Host-Switching.” Journal of Avian Biology 45(4): 374–86. https://doi.org/10.1111/jav.00375.Gangoso, Laura, Rafael Gutierrez-Lopez, Josué Martínez-De La Puente, and Jordi Figuerola. 2016. “Genetic Colour Polymorphism Is Associated with Avian Malarial Infections.” Biology Letters 12(12).Gangoso, Laura, Rafael Gutiérrez-López, Josué Martínez-de la Puente, and Jordi Figuerola. 2019. “Louse Flies of Eleonora’s Falcons That Also Feed on Their Prey Are Evolutionary Dead-End Hosts for Blood Parasites.” Molecular Ecology 28(7): 1812–25.Ganser, Claudia et al. 2020. “Is It Best on the Nest? Effects of Avian Life-History on Haemosporidian Parasitism.” International Journal for Parasitology: Parasites and Wildlife 13: 62–71. https://doi.org/10.1016/j.ijppaw.2020.07.014.Gaona-Gordillo, I., Holtmann, B., Mouchet, A., Hutfluss, A., Sánchez-Tójar, A., & Dingemanse, N. J. (2023). Are animal personality, body condition, physiology and structural size integrated? A comparison of species, populations and sexes, and the value of study replication. The Journal of animal ecology, 10.1111/1365-2656.13966. Advance online publication. https://doi.org/10.1111/1365-2656.13966.GARAMSZEGI, LÁSZLÓ Z. 2011. “Climate Change Increases the Risk of Malaria in Birds.” Global Change Biology 17(5): 1751–59. https://doi.org/10.1111/j.1365-2486.2010.02346.x.García-Longoria, Luz, Alfonso Marzal, Florentino De Lope, and Laszlo Garamszegi. 2019. “Host-Parasite Interaction Explains Variation in the Prevalence of Avian Haemosporidians at the Community Level.” PLoS ONE 14(3).Garnham, Percy Cyril Claude. 1966. “Malaria Parasites and Other Haemosporidia.” Malaria Parasites and other Haemosporidia.G.F. Bennett, M.A. Peirce & R.W. Ashford (1993) Avian Haematozoa: mortality and pathogenicity, Journal of Natural History, 27:5, 993-1001, DOI: 10.1080/00222939300770621Goater, Timothy M, Cameron P Goater, and Gerald W Esch. 2014. Parasitism : The Diversity and Ecology of Animal Parasites. Second edition. Cambridge, United Kingdom: Cambridge University Press.González, Angie D et al. 2014. “Mixed Species Flock, Nest Height, and Elevation Partially Explain Avian Haemoparasite Prevalence in Colombia.” PLOS ONE 9(6): e100695-. https://doi.org/10.1371/journal.pone.0100695.Gonzalez-Quevedo, Catalina, Richard G. Davies, and David S. Richardson. 2014. “Predictors of Malaria Infection in a Wild Bird Population: Landscape-Level Analyses Reveal Climatic and Anthropogenic Factors.” Journal of Animal Ecology 83(5): 1091–1102.Gonzalez-Quevedo, Catalina, Adriana Pabón, and Hector Fabio Rivera-Gutierrez. 2016. “Prévalence d’hémosporidies Dans Une Région Néotropicale d’endémisme Aviaire.” Avian Conservation and Ecology 11(1).Guacamayas, Hemoparásitos D E, Cotorras Y Tucanes, and D E L Centro. 2008. “Facultad De Medicina Veterinaria Y Zootecnia Escuela De Veterinaria Rehabilitación De Fauna Silvestre Arcas ,.”Gupta, Pooja, C. K. Vishnudas, V. V. Robin, and Guha Dharmarajan. 2020. “Host Phylogeny Matters: Examining Sources of Variation in Infection Risk by Blood Parasites across a Tropical Montane Bird Community in India.” Parasites and Vectors 13(1).Gutiérrez-López, Rafael et al. 2016. “Do Mosquitoes Transmit the Avian Malaria-like Parasite Haemoproteus? An Experimental Test of Vector Competence Using Mosquito Saliva.” Parasites and Vectors 9(1): 1–7.Gutiérrez-López, R., Martínez-de la Puente, J., Gangoso, L., Soriguer, R., & Figuerola, J. (2019). Effects of host sex, body mass and infection by avian Plasmodium on the biting rate of two mosquito species with different feeding preferences. Parasites & vectors, 12(1), 87. https://doi.org/10.1186/s13071-019-3342-xHackett, Shannon J. et al. 2008. “A Phylogenomic Study of Birds Reveals Their Evolutionary History.” Science 320(5884): 1763–68.Hawley, Dana M., and Sonia M. Altizer. 2011. “Disease Ecology Meets Ecological Immunology: Understanding the Links between Organismal Immunity and Infection Dynamics in Natural Populations.” Functional Ecology 25(1): 48–60.Hellgren, O., J. Waldenström & S. Bensch. 2004. a New Pcr Assay for Simultaneous Studies of Leucocytozoon, Plasmodium, and Haemoproteus From Avian Blood. J. Parasitol. 90: 797–802.Hellgren, O., Perez-Tris, J., & Bensch, S. (2009). A jack-of-all-trades and still a master of some: prevalence and host range in avian malaria and related blood parasites. Ecology, 90(10), 2840-2849. https://doi.org/10.1890/08-1059.1Hernández-Lara, Carolina, Fernando González-García, and Diego Santiago-Alarcon. 2017. “Spatial and Seasonal Variation of Avian Malaria Infections in Five Different Land Use Types within a Neotropical Montane Forest Matrix.” Landscape and Urban Planning 157: 151–60. https://www.sciencedirect.com/science/article/pii/S0169204616300925.Hochachka, WM y Dhondt, AA (2000). Disminución dependiente de la densidad de la abundancia de huéspedes como resultado de una nueva enfermedad infecciosa . Actas de la Academia Nacional de Ciencias , 97 , 5303–5306Hochberg, M. E., Y. Michalakis, and T. De Meeus. 1992. “Parasitism as a Constraint on the Rate of Life‐history Evolution.” Journal of Evolutionary Biology 5(3): 491–504.Holand, H., H. Jensen, J. Tufto, H. Pärn, B.E. Sæther & T.H. Ringsby. 2015. Endoparasite infection has both short- and long-term negative effects on reproductive success of female house sparrows, as revealed by faecal parasitic egg counts. PLoS One 10: 1–12.Hudson, Peter J et al. 2002. “Ecology of Wildlife Diseases.”HUNTER, MALCOLM L., GEORGE L. JACOBSON, and THOMPSON WEBB. 1988. “Paleoecology and the Coarse‐Filter Approach to Maintaining Biological Diversity.” Conservation Biology 2(4): 375–85.Hutchinson, G. E. (1957). Cold Spring Harbor Symposia on Quantitative Biology 22 (0): 415-427. ISSN 0091-7451. doi:10.1101/sqb.1957.022.01.039. Consultado el 2 de diciembre de 2020.Illera, Juan Carlos, Guillermo López, Laura García-Padilla, and Ángel Moreno. 2017. “Factors Governing the Prevalence and Richness of Avian Haemosporidian Communities within and between Temperate Mountains.” PLoS ONE 12(9).Ilgūnas Mikas , Vaidas Palinauskas, Elena Platonova, Tatjana Iezhova and Gediminas Valkiūnas. 2019. The experimental study on susceptibility of common European songbirds to Plasmodium elongatum (lineage pGRW6), a widespread avian malaria parasite. 18:290 https://doi.org/10.1186/s12936-019-2926-4.Jiménez Judy Natalia, Carlos Enrique Muskus, Iván Darío Vélez. 2005. Diversidad genética de Plasmodium falciparum y sus implicaciones en la epidemiología de la malaria. Biomédica ;25:588-602.Jiménez-Peñuela, J., M. Ferraguti, J. Martínez-de la Puente, R. Soriguer & J. Figuerola. 2019. Urbanization and blood parasite infections affect the body condition of wild birds. Sci. TotalJohn D. Edman , Herbert W. Kale, II., Host Behavior: Its Influence on the Feeding Success of Mosquitoes, Annals of the Entomological Society of America , volumen 64, número 2, 15 de marzo de 1971, páginas 513–516, https: //doi.org/10.1093/aesa/64.2.513Jovani, Roger, and José L. Tella. 2006. “Parasite Prevalence and Sample Size: Misconceptions and Solutions.” Trends in Parasitology 22(5): 214–18.Kassambara, A. (2020). factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. Environ. 651: 3015–3022.Kelly, Tosha et al. 2016. “Seasonal Migration Distance Varies with Natal Dispersal and Predicts Parasitic Infection in Song Sparrows.” Behavioral Ecology and Sociobiology 70.KNOWLES, S C L, V PALINAUSKAS, and B C SHELDON. 2010. “Chronic Malaria Infections Increase Family Inequalities and Reduce Parental Fitness: Experimental Evidence from a Wild Bird Population.” Journal of Evolutionary Biology 23(3): 557–69. https://doi.org/10.1111/j.1420-9101.2009.01920.x.KNOWLES, SARAH C L et al. 2011. “Molecular Epidemiology of Malaria Prevalence and Parasitaemia in a Wild Bird Population.” Molecular Ecology 20(5): 1062–76. https://doi.org/10.1111/j.1365-294X.2010.04909.x.Knowles, Sarah C.L., Shinichi Nakagawa, and Ben C. Sheldon. 2009. “Elevated Reproductive Effort Increases Blood Parasitaemia and Decreases Immune Function in Birds: A Meta-Regression Approach.” Functional Ecology 23(2): 405–15.Krama, T., Krams, R., Cirule, D. et al. La intensidad de la infección por hemosporidios de parids se correlaciona positivamente con la proximidad a los cuerpos de agua, pero negativamente con la supervivencia del huésped. J Ornitol 156 , 1075–1084 (2015). https://doi.org/10.1007/s10336-015-1206-5Krizanauskiene, A., Hellgren, O., Kosarev, V., Sokolov, L., Bensch, S., & Valkiunas, G. (2006). Variation in host specificity between species of avian hemosporidian parasites: evidence from parasite morphology and cytochrome B gene sequences. The Journal of parasitology, 92(6), 1319–1324. https://doi.org/10.1645/GE-873R.1Kuo, Chih Horng, John P. Wares, and Jessica C. Kissinger. 2008. “The Apicomplexan Whole-Genome Phylogeny: An Analysis of Incongruence among Gene Trees.” Molecular Biology and Evolution 25(12): 2689–98.Landau I, J.M. Chavatte, W. Peters and A. Chabaud. 2010. The sub-genera of Avian Plasmodium. Parasite Volume 17, Number 1:3-7. https://doi.org/10.1051/parasite/2010171003.LaPointe, Dennis A, Carter T Atkinson, and Michael D Samuel. 2012. “Ecology and Conservation Biology of Avian Malaria.” Annals of the New York Academy of Sciences 1249(1): 211–26. https://doi.org/10.1111/j.1749-6632.2011.06431.x.Leander, B.S., R.E. Clopton & P.J. Keeling. 2003. Phylogeny of grenarines (Apicomplexa) as inferred from a small-subunit rDNA and β-tubulin, International Journal of Systematic and Evolutionary Microbiology.Lemon, Stanley M., and Institute of Medicine (U.S.). Forum on Microbial Threats. 2008. Vector-Borne Diseases : Understanding the Environmental, Human Health, and Ecological Connections : Workshop Summary. National Academies Press.Levine, N.D. 2018. The Protozoan Phylum Apicomplexa: Volume 2. PRESS, CRC.LEVIN, I.I., ZWIERS, P., DEEM, S.L., GEEST, E.A., HIGASHIGUCHI, J.M., IEZHOVA, T.A., JIMÉNEZ-UZCÁTEGUI, G., KIM, D.H., MORTON, J.P., PERLUT, N.G., RENFREW, R.B., SARI, E.H.R., VALKIUNAS, G. and Parker, P.G. (2013), Multiple Lineages of Avian Malaria Parasites (Plasmodium) in the Galapagos Islands and Evidence for Arrival via Migratory Birds. Conservation Biology, 27: 1366-1377. https://doi.org/10.1111/cobi.12127Li, R., Xu, L., Bjørnstad, O.N., Liu, K., Song, T., Chen, A., Xu, B., Liu, Q., Stenseth, N.C., 2019. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Nat. Acad. Sci. U.S.A. 116, 3624–3629.Loehle, Craig. 1995. “Social Barriers to Pathogen Transmission in Wild Animal Populations.” Ecology 76(2): 326–35. https://doi.org/10.2307/1941192.Loiseau, Claire et al. 2010. “Spatial Variation of Haemosporidian Parasite Infection in African Rainforest Bird Species.” Journal of Parasitology 96(1): 21–29. https://doi.org/10.1645/GE-2123.1.Loiseau, C. , Harrigan, RJ , Robert, A. , Bowie, RC , Thomassen, HA , Smith, TB y Sehgal, RN ( 2012 ). Especialización del huésped y del hábitat de la malaria aviar en África . Ecología Molecular , 21 , 431 – 441López VL, FV Costa, RA Rodrigues, É M Braga, M Pichorim, PA Moreira. 2020. La alta fidelidad define la consistencia temporal de las interacciones huésped-parásito en un ecosistema costero tropical. 10 (1): 16839. doi: 10.1038 / s41598-020-73563-6.Lutz, H. L., Hochachka, W. M., Engel, J. I., Bell, J. A., Tkach, V. V., Bates, J. M. Weckstein, J. D. (2015). Parasite prevalence corresponds to host life history in a diverse assemblage of Afrotropical birds and haemosporidian parasites. PLoS One, 10, e0121254–24.Lynton-Jenkins, J. G., Bründl, A. C., Cauchoix, M., Lejeune, L. A., Sallé, L., Thiney, A. C., Russell, A. F., Chaine, A. S., & Bonneaud, C. (2020). Contrasting the seasonal and elevational prevalence of generalist avian haemosporidia in co-occurring host species. Ecology and evolution, 10(12), 6097–6111. https://doi.org/10.1002/ece3.6355Maia, João P, D James Harris, Salvador Carranza, and Elena Gómez-Díaz. 2014. “A Comparison of Multiple Methods for Estimating Parasitemia of Hemogregarine Hemoparasites (Apicomplexa: Adeleorina) and Its Application for Studying Infection in Natural Populations.” PLOS ONE 9(4): e95010-. https://doi.org/10.1371/journal.pone.0095010.Marquardt, William C. 2004. Biology of disease vectors. 2nd Edition. ISBN 9780080494067.Martínez-Alvarado, Dariel. 2019. “Prevalencia, Diversidad y Especificidad de hemosporidios Aviares En Un Gradiente Ambiental En El Neotrópico.” Tesis de Maestría. Universidad de Antioquia.Martínez-De La Puente, Josué et al. 2010. “The Blood Parasite Haemoproteus Reduces Survival in a Wild Bird: A Medication Experiment.” Biology Letters 6(5): 663–65.Martínez-de la Puente, Josué, Jenny C. Dunn, and Laura Gangoso. 2021. “Editorial: Factors Affecting Host Selection by Mosquitoes: Implications for the Transmission of Vector-Borne Pathogens.” Frontiers in Ecology and Evolution 9.Martín-Maldonado, B., Mencía-Gutiérrez, A., Andreu-Vázquez, C., Fernández, R., Pastor-Tiburón, N., Alvarado, A., Carrero, A., Fernández-Novo, A., Esperón, F., & González, F. (2023). A Four-Year Survey of Hemoparasites from Nocturnal Raptors (Strigiformes) Confirms a Relation between Leucocytozoon and Low Hematocrit and Body Condition Scores of Parasitized Birds. Veterinary sciences, 10(1), 54. https://doi.org/10.3390/vetsci10010054Martin, T. E., Møller, A. P., Merino, S., & Clobert, J. (2001). Does clutch size evolve in response to parasites and immunocompetence?. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2071–2076. https://doi.org/10.1073/pnas.98.4.2071Marzal, A., Muhammad, A., Rodriguez, L., Reviriego, M., Hermosell, I. G., Balbontin, J., Garcia-Longoria, L., de Lope, F., & Bensch, S. (2013). Co-infections by malaria parasites decrease feather growth but not feather quality in house martin. Journal of Avian Biology, 44(5), 437-444. https://doi.org/10.1111/j.1600-048X.2013.00178.xMarzal, Alfonso et al. 2011. “Diversity, Loss, and Gain of Malaria Parasites in a Globally Invasive Bird.” PLoS ONE 6(7).Marzal, Alfonso, Florentino de Lope, Carlos Navarro, and Anders Pape Møller. 2005. “Malarial Parasites Decrease Reproductive Success: An Experimental Study in a Passerine Bird.” Oecologia 142(4): 541–45. https://doi.org/10.1007/s00442-004-1757-2.Marzal, Alfonso, Sergio Magallanes, and Luz Garcia-Longoria. 2022. “Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour.” Biology 11(5).Matthews, Alix E et al. 2016. “Avian Haemosporidian Prevalence and Its Relationship to Host Life Histories in Eastern Tennessee.” Journal of Ornithology 157(2): 533–48. https://doi.org/10.1007/s10336-015-1298-y.Medeiros, Matthew C I, Robert E Ricklefs, Jeffrey D Brawn, and Gabriel L Hamer. 2015. “Plasmodium Prevalence across Avian Host Species Is Positively Associated with Exposure to Mosquito Vectors.” Parasitology 142(13): 1612–20.Merino, S., J. Moreno, J. J. Sanz, and E. Arriero. 2000. “Are Avian Blood Parasites Pathogenic in the Wild? A Medication Experiment in Blue Tits (Parus Caeruleus).” Proceedings of the Royal Society B: Biological Sciences 267(1461): 2507–10.Minchella, Dennis J, and Marilyn E Scott. 1991. “Parasitism: A Cryptic Determinant of Animal Community Structure.” Trends in Ecology & Evolution 6(8): 250–54. https://www.sciencedirect.com/science/article/pii/0169534791900715.Moens, Michaël A J, and Javier Pérez-Tris. 2016. “Discovering Potential Sources of Emerging Pathogens: South America Is a Reservoir of Generalist Avian Blood Parasites.” International Journal for Parasitology 46(1): 41–49. https://www.sciencedirect.com/science/article/pii/S0020751915002222.Møller, Anders Pape, and Johannes Erritzøe. 1998. “Host Immune Defence and Migration in Birds.” Evolutionary Ecology 12(8): 945–53.Møller AP Et al,. 2006. exposición posterior a la canción, características de la canción y riesgo de depredación, Behavioral Ecology , volumen 17, número 2, marzo/abril de 2006, páginas 155–163, https://doi.org/10.1093/beheco/arj010.Morand, S, Boris R Krasnov, and D T J (D. Timothy J.) Littlewood. 2015. Parasite Diversity and Diversification : Evolutionary Ecology Meets Phylogenetics. Cambridge, United Kingdom: Cambridge University Press.Muriel, J. 2020. “Ecophysiological Assessment of Blood Haemosporidian Infections in Birds.” Ecosistemas 29(2).Nilsson, E. et al. 2016. “Multiple Cryptic Species of Sympatric Generalists within the Avian Blood Parasite Haemoproteus Majoris.” Journal of evolutionary biology 29(9): 1812–26.Norris, Ken, and Matthew R Evans. 2000. “Ecological Immunology: Life History Trade-Offs and Immune Defense in Birds.” Behavioral Ecology 11(1): 19–26.Oakgrove, Khouanchy S et al. 2014. “Distribution, Diversity and Drivers of Blood-Borne Parasite Co-Infections in Alaskan Bird Populations.” International Journal for Parasitology 44(10): 717–27. https://www.sciencedirect.com/science/article/pii/S0020751914001465.Olias PM, Wegelin W, Zenker S, Freter A, Gruber D, Klopfleisch R. 2011. Avian malaria deaths in parrots. Eur Emerg Infect Dis.17:950–2.Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., Kassem, K. R. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51(11):933-938.Okanga, S., Cumming, G. S., & Hockey, P. A. (2013). Avian malaria prevalence and mosquito abundance in the Western Cape, South Africa. Malaria journal, 12, 370. https://doi.org/10.1186/1475-2875-12-370Olsson-Pons, Sophie, Nicholas J. Clark, Farah Ishtiaq, and Sonya M. Clegg. 2015. “Differences in Host Species Relationships and Biogeographic Influences Produce Contrasting Patterns of Prevalence, Community Composition and Genetic Structure in Two Genera of Avian Malaria Parasites in Southern Melanesia.” Journal of Animal Ecology 84(4): 985–98. https://doi.org/10.1111/1365-2656.12354Ortiz-Hector F. (2015). Malaria Aviar en los Chingolos (Zonotrichia capensis) del Parque Recreacional-Bosque Protector Jerusalem, Pichincha, Ecuador. http://repositorio.puce.edu.ec/handle/22000/8619.Padilla, D. P., Illera, J. C., Gonzalez-Quevedo, C., Villalba, M., & Richardson, D. S. (2017). Factors affecting the distribution of haemosporidian parasites within an oceanic island. International journal for parasitology, 47(4), 225–235. https://doi.org/10.1016/j.ijpara.2016.11.008Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S. 2011. Plasmodium relictum (lineage SGS1) and Plasmodium ashfordi (lineage GRW2): the effects of the co-infection on experimentally infected passerine birds. Exp Parasitol;127:527–33.Patz, JA, Graczyk, TK, Geller, N. y Vittor, AY (2000). Efectos del cambio ambiental en las enfermedades parasitarias emergentes . Revista Internacional de Parasitología , 30 , 1395–1405.Pérez-Tris, J., Dennis, Hasselquist, O. Hellgren, K. Asta, J. Waldenström & S. Bensch. 2005. What are malaria parasites? Trends Parasitol. 21: 209–211.Pérez-Tris, J. and Bensch, S. 2005. Dispersal increases local transmission of avian malarial parasites. Ecology Letters, 8: 838-845. https://doi.org/10.1111/j.1461-0248.2005.00788.xPontes-Pedrajas, A, and Francisco Javier Sánchez Sánchez-Cañete. 2010. “La Comprensión de Conceptos de Ecología y Sus Implicaciones Para La Educación Ambiental.”Poulin, R. & S. Morand. 2000. The Diversity of Parasites. Q. Rev. Biol. 75: 277–293.Poulin., R. (2006). Evolutionary Ecology of Parasites. Princeton University Press. ISBN 978-0-691-12085-0.Poulin, R., B.R. Krasnov & D. Mouillot. 2011. Host specificity in phylogenetic and geographic space. Trends Parasitol. 27: 355–361.Poulin, Robert et al. 2012. “Migration as an Escape from Parasitism in New Zealand Galaxiid Fishes.” Oecologia 169(4): 955–63. https://doi.org/10.1007/s00442-012-2251-x.Pulgarín-R, Paulo C. et al. 2018. “Host Species, and Not Environment, Predicts Variation in Blood Parasite Prevalence, Distribution, and Diversity along a Humidity Gradient in Northern South America.” Ecology and Evolution 8(8): 3800–3814.QGIS.org. 2019. “QGIS Geographic Information System.”R. Core Team. 2018. “R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL Https://Www.R-Project.Org/.”Ricklefs, Robert E. et al. 2014. “Species Formation by Host Shifting in Avian Malaria Parasites.” Proceedings of the National Academy of Sciences of the United States of America 111(41): 14816–21.Ricklefs, R.E., Medeiros, M., Ellis, V.A., Svensson-Coelho, M., Blake, J.G., Loiselle, B.A., Soares, L., Fecchio, A., Outlaw, D., Marra, P.P., Latta, S.C., Valkiūnas, G., Hellgren, O. and Bensch, S. (2017), Avian migration and the distribution of malaria parasites in New World passerine birds. J. Biogeogr., 44: 1113-1123. https://doi.org/10.1111/jbi.12928.Ricklefs, Robert E., and Sylvia M. Fallon. 2002. “Diversification and Host Switching in Avian Malaria Parasites.” Proceedings of the Royal Society B: Biological Sciences 269(1494): 885–92.Rivera-Gutiérrez H.F., Lentijo-Jimenez G.M., Chinome-Torres G.A., Llano-Mejía J., Martínez-Alvarado D., González-Quevedo C., Gómez-Ahumada M.F., Parra J.L. (2018). Aves del cañón del río Cauca. Guía ilustrada de la avifauna en el área de incidencia del proyecto Hidroituango.Rivero, J., D.A. Id, F. Castillo, A. Moreno, L. Browne, S.T. Walter, J. Karubian & E. Bonaccorso. 2018. Patterns of avian haemosporidian infections vary with time , but not habitat , in a fragmented Neotropical landscape 1–18.Roberts, L.S.J.J.J. 2000. Gerald D. Schmidt & Larry S. Roberts’ foundations of parasitology.Rodrigues, Raquel A. et al. 2021. “Host Migration and Environmental Temperature Influence Avian Haemosporidians Prevalence: A Molecular Survey in a Brazilian Atlantic Rainforest.” PeerJ.Rodriguez, Marina D., Paul F. Doherty, Antoinette J. Piaggio, and Kathryn P. Huyvaert. 2021. “Sex and Nest Type Influence Avian Blood Parasite Prevalence in a High-Elevation Bird Community.” Parasites and Vectors 14(1).Ruppert, Edward E.; Fox, Richard, S.; Barnes, Robert D. (2004). Invertebrate Zoology, 7th edition. Cengage Learning. ISBN 978-81-315-0104-7. Santiago-Alarcon, Diego et al. 2016. “Avian Haemosporidian Parasites in an Urban Forest and Their Relationship to Bird Size and Abundance.” Urban Ecosystems 19(1): 331–46. https://doi.org/10.1007/s11252-015-0494-0.Santiago-Alarcon, Diego, and Alfonso Marzal. 2020. Avian Malaria and Related Parasites in the Tropics : Ecology, Evolution and Systematics. Cham, Switzerland: Springer.Santiago-Alarcon, Diego, Vaidas Palinauskas, and Hinrich Martin Schaefer. 2012. “Diptera Vectors of Avian Haemosporidian Parasites: Untangling Parasite Life Cycles and Their Taxonomy.” Biological Reviews 87(4): 928–64. https://doi.org/10.1111/j.1469-185X.2012.00234.x.Satterfield, Dara A., Francis X. Villablanca, John C. Maerz, and Sonia Altizer. 2016. “Migratory Monarchs Wintering in California Experience Low Infection Risk Compared to Monarchs Breeding Year-Round on Non-Native Milkweed.” In Integrative and Comparative Biology, Oxford University Press, 343–52.Schliep K (2011). "phangorn: análisis filogenético en R". Bioinformática , 27 (4), 592–593. doi:10.1093/bioinformatics/btq706 .Schliep, Klaus, Potts, J. A, Morrison, A. D, Grimm, W. G (2017). "Entrelazamiento de redes y árboles filogenéticos". Métodos en ecología y evolución , 8 (10), 1212–1220.Sehgal R. N. (2015). Manifold habitat effects on the prevalence and diversity of avian blood parasites. International journal for parasitology. Parasites and wildlife, 4(3), 421–430. https://doi.org/10.1016/j.ijppaw.2015.09.001Sehgal, R.N.M., W. Buermann, R.J. Harrigan, C. Bonneaud, C. Loiseau, A.C. Chasar, I. Sepil, G. Valkiūnas, T. a Iezhova, S. Saatchi & T.B. Smith. 2011. Spatially explicit predictions of blood parasites in a widely distributed African rainforest bird. Proc. R. Soc. B Biol. Sci. 278: 1025–1033.Schulenburg, Hinrich, Joachim Kurtz, Yannick Moret, and Michael T Siva-Jothy. 2008. “Introduction. Ecological Immunology.” Philosophical Transactions of the Royal Society B: Biological Sciences 364(1513): 3–14. https://doi.org/10.1098/rstb.2008.0249.Scordato, Elizabeth S.C., and Melissa R. Kardish. 2014. “Prevalence and Beta Diversity in Avian Malaria Communities: Host Species Is a Better Predictor than Geography.” Journal of Animal Ecology 83(6): 1387–97.Slowinski, Samuel P et al. 2018. “Sedentary Songbirds Maintain Higher Prevalence of Haemosporidian Parasite Infections than Migratory Conspecifics during Seasonal Sympatry.” PLOS ONE 13(8): e0201563-. https://doi.org/10.1371/journal.pone.0201563.Sorci, G., Møller, AP y Clobert, J. (1998), El dicromatismo del plumaje de las aves predice el éxito de la introducción en Nueva Zelanda. Revista de Ecología Animal, 67: 263-269. https://doi.org/10.1046/j.1365-2656.1998.00199.xStoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. The American naturalist, 171(6), 755–776. https://doi.org/10.1086/587526Šujanová, Alžbeta, and Radovan Václav. 2022. “Phylogeographic Patterns of Haemoproteid Assemblages of Selected Avian Hosts: Ecological and Evolutionary Implications.” Microorganisms 10(5).Svensson-Coelho, M., B.A. Loiselle, J.G. Blake & R.E. Ricklefs. 2016. Resource predictability and specialization in avian malaria parasites. Mol. Ecol. 0: 4377–4391.Svensson-Coelho, M. , Blake, JG, Loiselle, BA, Penrose, AS, Parker, PG y Ricklefs, RE. 2013. Diversidad, prevalencia y especificidad de hospederos de Plasmodium y Haemoproteus aviares en un ensamble del Amazonas occidental . Monografías ornitológicas , 76 (1), 1-47. https://doi.org/10.1525/om.2013.76.1.1Sweet, Andrew D et al. 2018. “Host and Parasite Morphology Influence Congruence between Host and Parasite Phylogenies.” International Journal for Parasitology 48(8): 641–48. https://www.sciencedirect.com/science/article/pii/S0020751918300596.Synek, Petr, Pavel Munclinger, Tomáš Albrecht, and Jan Votýpka. 2013. “Avian Haemosporidians in Haematophagous Insects in the Czech Republic.” Parasitology Research 112(2): 839–45. https://doi.org/10.1007/s00436-012-3204-3.Tamayo-Quintero, Juliana. 2022. “hemosporidios aviares: Desde la composición de la comunidad avifaunística a la ecología del paisaje en bosques de protección de embalses del oriente de antioquia.” Tesis de Maestría. Universidad de Antioquia.Tomás G., Merino S., Martínez-De La Puente J., Moreno J., Morales J., Lobato E. 2008. Determinants of abundance and effects of blood-sucking flying insects in the nest of a hole-nesting bird. Oecologia ;156:305–312. doi: 10.1007/s00442-008-1001-6.Thompson. (2005). “The Ecology and Evolution of Ant-Plant Interactions.” Ecoscience 15(2): 290–91. https://doi.org/10.2980/1195-6860(2008)15[290b:TEAEOA]2.0.CO.Tobias, Joseph A. et al. 2022. “AVONET: Morphological, Ecological and Geographical Data for All Birds.” Ecology Letters 25(3): 581–97.Tomás, G. et al. 2007. “Impact of Blood Parasites on Immunoglobulin Level and Parental Effort: A Medication Field Experiment on a Wild Passerine.” Functional Ecology 21(1): 125–33.Tucker, C. J., and J.R.G. Townshend. 1985. “African Land- Cover Classification Using Satellite Data.” Science 227: 369–75.Tung Ho, Lam Si, and Cécile Ané. 2014. “A Linear-Time Algorithm for Gaussian and Non-Gaussian Trait Evolution Models.” Systematic Biology 63(3): 397–408.Tyers, M. 2017. “Riverdist: River Network Distance Computation and Applications. R Package Version 0.14. 0.”Valkiunas, Gediminas. 2004. Avian Malaria Parasites and Other Haemosporidia. CRC press.Valkiūnas, Gediminas et al. 2013. “Abortive Long-Lasting Sporogony of Two Haemoproteus Species (Haemosporida, Haemoproteidae) in the Mosquito Ochlerotatus Cantans, with Perspectives on Haemosporidian Vector Research.” Parasitology Research 112(6): 2159–69. https://doi.org/10.1007/s00436-013-3375-6.Valkiūnas, Gediminas, and Tatjana A. Iezhova. 2022. “Keys to the Avian Haemoproteus Parasites (Haemosporida, Haemoproteidae).” Malaria Journal 21(1).Valkiūnas, Gediminas, Tadas Z̆ic̆kus, Anatoly P Shapoval, and Tatjana A Iezhova. 2006. “Effect of Haemoproteus Belopolskyi (Haemosporida: Haemoproteidae) on Body Mass of the Blackcap Sylvia Atricapilla.” Journal of Parasitology 92(5): 1123–25. https://doi.org/10.1645/GE-3564-RN.1.Valkiūnas, G., Iezhova, TA. (2016). Claves para los parásitos de la malaria aviar. Malar J 17, 212. https://doi.org/10.1186/s12936-018-2359-5Valkiūnas, G., Iezhova, TA. (2016). Claves para los parásitos de la malaria aviar. Malar J 17, 212. https://doi.org/10.1186/s12936-018-2359-5Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.).Williamson, Jessie L et al. 2019. “Ecology, Not Distance, Explains Community Composition in Parasites of Sky-Island Audubon’s Warblers.” International Journal for Parasitology 49(6): 437–48. https://www.sciencedirect.com/science/article/pii/S0020751919300517.Wood, MJ , Cosgrove, CL , Wilkin, TA , Knowles, SCL , Day, KP & Sheldon, BC. 2007. Variación dentro de la población en la prevalencia y distribución de linaje de malaria aviar en herrerillos azules, Cyanistes caeruleus . Ecología Molecular , 16 , 3263 – 3273 .Yan J., Broggi J., Martínez-De La Puente J., Gutiérrez-López R., Gangoso L., Soriguer R., Figuerola J. 2018. ¿Does bird metabolic rate influence mosquito feeding preference?. Parasites Vectors ; 11 :110. doi: 10.1186/s13071-018-2708-9.Yan, Jiayue et al. 2017. “Avian Phenotypic Traits Related to Feeding Preferences in Two Culex Mosquitoes.” The Science of Nature 104(9): 76. https://doi.org/10.1007/s00114-017-1497-x.Yan, J., Gangoso, L., Ruiz, S., Soriguer, R., Figuerola, J., & Martínez-de la Puente, J. (2021). Understanding host utilization by mosquitoes: determinants, challenges and future directions. Biological reviews of the Cambridge Philosophical Society, 96(4), 1367–1385. https://doi.org/10.1111/brv.12706.Zuluaga, Walter Alonso et al. 2012. “Vigilancia de Insectos de Importancia En Salud Pública Durante La Construcción de Los Proyectos Hidroeléctricos Porce II y Porce III, Antioquia, Colombia, 1990-2009.” Biomédica 32(3): 321–32.Lat: 07 04 00 N degrees minutes Lat: 7.0667 decimal degrees Long: 075 45 00 W degrees minutes Long: -75.7500 decimal degreesLat: 07 10 00 N degrees minutes Lat: 7.1667 decimal degrees Long: 075 25 00 W degrees minutes Long: -75.4167 decimal degreeshttp://vocab.getty.edu/page/tgn/1023841http://vocab.getty.edu/page/tgn/1024056ItuangoValdiviaToledoBriceñoPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/91b7971f-c311-4b1b-b6f4-f021bc12f64c/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADORIGINALPinzonPaula_2023_InfeccionHemosporidiosAviares.pdfPinzonPaula_2023_InfeccionHemosporidiosAviares.pdfapplication/pdf2761536https://bibliotecadigital.udea.edu.co/bitstreams/f0139994-0ff0-45f1-ab7d-ca78a0376626/download6ab080ef90d62006683a02aee805f32cMD53trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/4e67ac87-2b36-4e17-a4fe-8496d8ea019c/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADTEXTPinzonPaula_2023_InfeccionHemosporidiosAviares.pdf.txtPinzonPaula_2023_InfeccionHemosporidiosAviares.pdf.txtExtracted texttext/plain105924https://bibliotecadigital.udea.edu.co/bitstreams/8ac29c5b-177a-4835-b81c-05b33214f0a0/downloadf3ea3151fa333803b4b2f9d7cf5be96cMD55falseAnonymousREADTHUMBNAILPinzonPaula_2023_InfeccionHemosporidiosAviares.pdf.jpgPinzonPaula_2023_InfeccionHemosporidiosAviares.pdf.jpgGenerated Thumbnailimage/jpeg6919https://bibliotecadigital.udea.edu.co/bitstreams/7c2f3283-4e4e-4b9f-92c3-1363a896d591/download8c3d6386dc52be8b7c688dd0ac6f7ef3MD56falseAnonymousREAD10495/45933oai:bibliotecadigital.udea.edu.co:10495/459332025-05-16 11:16:46.792http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
