Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of...
- Autores:
-
Cárdenas Torres, Andrés Mauricio
Uribe Pérez, Juliana
Font Llagunes, Josep M.
Hernández Valdivieso, Alher Mauricio
Plata Contreras, Jesús Alberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/34831
- Acceso en línea:
- https://hdl.handle.net/10495/34831
- Palabra clave:
- Amputados
Amputees
Miembros Artificiales
Artificial Limbs
Teorema de Bayes
Bayes Theorem
Fenómenos Biomecánicos
Biomechanical Phenomena
Extremidades
Extremities
Marcha
Gait
Diseño de Prótesis
Prosthesis Design
Transfemoral amputees
Ground reaction force
Neural networks
Support Vector Machine
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_91c9c5059a40d620f85bbf094371c3fa |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/34831 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| title |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| spellingShingle |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques Amputados Amputees Miembros Artificiales Artificial Limbs Teorema de Bayes Bayes Theorem Fenómenos Biomecánicos Biomechanical Phenomena Extremidades Extremities Marcha Gait Diseño de Prótesis Prosthesis Design Transfemoral amputees Ground reaction force Neural networks Support Vector Machine |
| title_short |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| title_full |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| title_fullStr |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| title_full_unstemmed |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| title_sort |
Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques |
| dc.creator.fl_str_mv |
Cárdenas Torres, Andrés Mauricio Uribe Pérez, Juliana Font Llagunes, Josep M. Hernández Valdivieso, Alher Mauricio Plata Contreras, Jesús Alberto |
| dc.contributor.author.none.fl_str_mv |
Cárdenas Torres, Andrés Mauricio Uribe Pérez, Juliana Font Llagunes, Josep M. Hernández Valdivieso, Alher Mauricio Plata Contreras, Jesús Alberto |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Bioinstrumentación e Ingeniería Clínica (GIBIC) Rehabilitación en Salud |
| dc.subject.decs.none.fl_str_mv |
Amputados Amputees Miembros Artificiales Artificial Limbs Teorema de Bayes Bayes Theorem Fenómenos Biomecánicos Biomechanical Phenomena Extremidades Extremities Marcha Gait Diseño de Prótesis Prosthesis Design |
| topic |
Amputados Amputees Miembros Artificiales Artificial Limbs Teorema de Bayes Bayes Theorem Fenómenos Biomecánicos Biomechanical Phenomena Extremidades Extremities Marcha Gait Diseño de Prótesis Prosthesis Design Transfemoral amputees Ground reaction force Neural networks Support Vector Machine |
| dc.subject.proposal.spa.fl_str_mv |
Transfemoral amputees Ground reaction force Neural networks Support Vector Machine |
| description |
ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of machine learning could assist the prosthetist during the judgment of optimal alignment. Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new computational protocol based on machine learning. Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian regularization neural network were trained to predict the alignment condition, as well as the magnitude and angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one senior prosthetist during the prosthetic alignment of two transfemoral amputees. Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for the first amputee and 9.6/10 for the second amputee. Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases associated with misalignments and consequently improving the amputees-prosthesis adherence. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-05-05T14:09:54Z |
| dc.date.available.none.fl_str_mv |
2023-05-05T14:09:54Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020. |
| dc.identifier.issn.none.fl_str_mv |
0966-6362 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/34831 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.gaitpost.2023.03.020 |
| dc.identifier.eissn.none.fl_str_mv |
1879-2219 |
| identifier_str_mv |
Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020. 0966-6362 10.1016/j.gaitpost.2023.03.020 1879-2219 |
| url |
https://hdl.handle.net/10495/34831 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Gait Posture |
| dc.relation.citationendpage.spa.fl_str_mv |
131 |
| dc.relation.citationstartpage.spa.fl_str_mv |
125 |
| dc.relation.citationvolume.spa.fl_str_mv |
102 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Gait & Posture |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
7 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Oxford, Londres |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/7317ed05-eed3-4d9c-a1e2-15b0ae7151e2/download https://bibliotecadigital.udea.edu.co/bitstreams/9f3d63f5-f41e-48f0-a19e-e1c0715593bf/download https://bibliotecadigital.udea.edu.co/bitstreams/cae38454-203e-4c5a-a3a4-f6fdbea141ec/download https://bibliotecadigital.udea.edu.co/bitstreams/ce310ef8-9ed4-416e-8a95-d5cbed6a5c97/download https://bibliotecadigital.udea.edu.co/bitstreams/6e8096f2-d799-43a1-ba3e-645747dbe4d5/download |
| bitstream.checksum.fl_str_mv |
1fbc8d26a071bfc7672cd94b1af22a14 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 479958411fd842c5bfe0396771c8afd4 e10a8a6134d359e340dcc94fa50a3113 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052163777691648 |
| spelling |
Cárdenas Torres, Andrés MauricioUribe Pérez, JulianaFont Llagunes, Josep M.Hernández Valdivieso, Alher MauricioPlata Contreras, Jesús AlbertoGrupo de Investigación en Bioinstrumentación e Ingeniería Clínica (GIBIC)Rehabilitación en Salud2023-05-05T14:09:54Z2023-05-05T14:09:54Z2023Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020.0966-6362https://hdl.handle.net/10495/3483110.1016/j.gaitpost.2023.03.0201879-2219ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of machine learning could assist the prosthetist during the judgment of optimal alignment. Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new computational protocol based on machine learning. Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian regularization neural network were trained to predict the alignment condition, as well as the magnitude and angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one senior prosthetist during the prosthetic alignment of two transfemoral amputees. Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for the first amputee and 9.6/10 for the second amputee. Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases associated with misalignments and consequently improving the amputees-prosthesis adherence.COL0054963COL00155997application/pdfengElsevierOxford, Londreshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniquesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAmputadosAmputeesMiembros ArtificialesArtificial LimbsTeorema de BayesBayes TheoremFenómenos BiomecánicosBiomechanical PhenomenaExtremidadesExtremitiesMarchaGaitDiseño de PrótesisProsthesis DesignTransfemoral amputeesGround reaction forceNeural networksSupport Vector MachineGait Posture131125102Gait & PosturePublicationORIGINALCardenas_Andres_2023_NovelComputationalProtocol.pdfCardenas_Andres_2023_NovelComputationalProtocol.pdfArtículo de investigaciónapplication/pdf2656908https://bibliotecadigital.udea.edu.co/bitstreams/7317ed05-eed3-4d9c-a1e2-15b0ae7151e2/download1fbc8d26a071bfc7672cd94b1af22a14MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/9f3d63f5-f41e-48f0-a19e-e1c0715593bf/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cae38454-203e-4c5a-a3a4-f6fdbea141ec/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTCardenas_Andres_2023_NovelComputationalProtocol.pdf.txtCardenas_Andres_2023_NovelComputationalProtocol.pdf.txtExtracted texttext/plain44228https://bibliotecadigital.udea.edu.co/bitstreams/ce310ef8-9ed4-416e-8a95-d5cbed6a5c97/download479958411fd842c5bfe0396771c8afd4MD56falseAnonymousREADTHUMBNAILCardenas_Andres_2023_NovelComputationalProtocol.pdf.jpgCardenas_Andres_2023_NovelComputationalProtocol.pdf.jpgGenerated Thumbnailimage/jpeg14254https://bibliotecadigital.udea.edu.co/bitstreams/6e8096f2-d799-43a1-ba3e-645747dbe4d5/downloade10a8a6134d359e340dcc94fa50a3113MD57falseAnonymousREAD10495/34831oai:bibliotecadigital.udea.edu.co:10495/348312025-03-26 17:56:04.58https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
