Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques

ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of...

Full description

Autores:
Cárdenas Torres, Andrés Mauricio
Uribe Pérez, Juliana
Font Llagunes, Josep M.
Hernández Valdivieso, Alher Mauricio
Plata Contreras, Jesús Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34831
Acceso en línea:
https://hdl.handle.net/10495/34831
Palabra clave:
Amputados
Amputees
Miembros Artificiales
Artificial Limbs
Teorema de Bayes
Bayes Theorem
Fenómenos Biomecánicos
Biomechanical Phenomena
Extremidades
Extremities
Marcha
Gait
Diseño de Prótesis
Prosthesis Design
Transfemoral amputees
Ground reaction force
Neural networks
Support Vector Machine
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_91c9c5059a40d620f85bbf094371c3fa
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/34831
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
title Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
spellingShingle Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
Amputados
Amputees
Miembros Artificiales
Artificial Limbs
Teorema de Bayes
Bayes Theorem
Fenómenos Biomecánicos
Biomechanical Phenomena
Extremidades
Extremities
Marcha
Gait
Diseño de Prótesis
Prosthesis Design
Transfemoral amputees
Ground reaction force
Neural networks
Support Vector Machine
title_short Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
title_full Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
title_fullStr Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
title_full_unstemmed Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
title_sort Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques
dc.creator.fl_str_mv Cárdenas Torres, Andrés Mauricio
Uribe Pérez, Juliana
Font Llagunes, Josep M.
Hernández Valdivieso, Alher Mauricio
Plata Contreras, Jesús Alberto
dc.contributor.author.none.fl_str_mv Cárdenas Torres, Andrés Mauricio
Uribe Pérez, Juliana
Font Llagunes, Josep M.
Hernández Valdivieso, Alher Mauricio
Plata Contreras, Jesús Alberto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Bioinstrumentación e Ingeniería Clínica (GIBIC)
Rehabilitación en Salud
dc.subject.decs.none.fl_str_mv Amputados
Amputees
Miembros Artificiales
Artificial Limbs
Teorema de Bayes
Bayes Theorem
Fenómenos Biomecánicos
Biomechanical Phenomena
Extremidades
Extremities
Marcha
Gait
Diseño de Prótesis
Prosthesis Design
topic Amputados
Amputees
Miembros Artificiales
Artificial Limbs
Teorema de Bayes
Bayes Theorem
Fenómenos Biomecánicos
Biomechanical Phenomena
Extremidades
Extremities
Marcha
Gait
Diseño de Prótesis
Prosthesis Design
Transfemoral amputees
Ground reaction force
Neural networks
Support Vector Machine
dc.subject.proposal.spa.fl_str_mv Transfemoral amputees
Ground reaction force
Neural networks
Support Vector Machine
description ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of machine learning could assist the prosthetist during the judgment of optimal alignment. Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new computational protocol based on machine learning. Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian regularization neural network were trained to predict the alignment condition, as well as the magnitude and angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one senior prosthetist during the prosthetic alignment of two transfemoral amputees. Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for the first amputee and 9.6/10 for the second amputee. Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases associated with misalignments and consequently improving the amputees-prosthesis adherence.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-05T14:09:54Z
dc.date.available.none.fl_str_mv 2023-05-05T14:09:54Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020.
dc.identifier.issn.none.fl_str_mv 0966-6362
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/34831
dc.identifier.doi.none.fl_str_mv 10.1016/j.gaitpost.2023.03.020
dc.identifier.eissn.none.fl_str_mv 1879-2219
identifier_str_mv Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020.
0966-6362
10.1016/j.gaitpost.2023.03.020
1879-2219
url https://hdl.handle.net/10495/34831
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Gait Posture
dc.relation.citationendpage.spa.fl_str_mv 131
dc.relation.citationstartpage.spa.fl_str_mv 125
dc.relation.citationvolume.spa.fl_str_mv 102
dc.relation.ispartofjournal.spa.fl_str_mv Gait & Posture
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Oxford, Londres
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/7317ed05-eed3-4d9c-a1e2-15b0ae7151e2/download
https://bibliotecadigital.udea.edu.co/bitstreams/9f3d63f5-f41e-48f0-a19e-e1c0715593bf/download
https://bibliotecadigital.udea.edu.co/bitstreams/cae38454-203e-4c5a-a3a4-f6fdbea141ec/download
https://bibliotecadigital.udea.edu.co/bitstreams/ce310ef8-9ed4-416e-8a95-d5cbed6a5c97/download
https://bibliotecadigital.udea.edu.co/bitstreams/6e8096f2-d799-43a1-ba3e-645747dbe4d5/download
bitstream.checksum.fl_str_mv 1fbc8d26a071bfc7672cd94b1af22a14
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
479958411fd842c5bfe0396771c8afd4
e10a8a6134d359e340dcc94fa50a3113
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052163777691648
spelling Cárdenas Torres, Andrés MauricioUribe Pérez, JulianaFont Llagunes, Josep M.Hernández Valdivieso, Alher MauricioPlata Contreras, Jesús AlbertoGrupo de Investigación en Bioinstrumentación e Ingeniería Clínica (GIBIC)Rehabilitación en Salud2023-05-05T14:09:54Z2023-05-05T14:09:54Z2023Cárdenas AM, Uribe J, Font-Llagunes JM, Hernández AM, Plata JA. Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniques. Gait Posture. 2023 May;102:125-131. doi: 10.1016/j.gaitpost.2023.03.020.0966-6362https://hdl.handle.net/10495/3483110.1016/j.gaitpost.2023.03.0201879-2219ABSTRACT: Background: The prosthetic alignment procedure considers biomechanical, anatomical and comfort characteristics of the amputee to achieve an acceptable gait. Prosthetic malalignment induces long-term disease. The assessment of alignment is highly variable and subjective to the experience of the prosthetist, so the use of machine learning could assist the prosthetist during the judgment of optimal alignment. Research objective: To assist the prosthetist during the assessment of prosthetic alignment using a new computational protocol based on machine learning. Methods: Sixteen transfemoral amputees were recruited for training and validation of the alignment protocol. Four misalignments and one nominal alignment were performed. Eleven prosthetic limb ground reaction force parameters were recorded. A support vector machine with a Gaussian kernel radial basis function and a Bayesian regularization neural network were trained to predict the alignment condition, as well as the magnitude and angle of required to align the prosthesis correctly. The alignment protocol was validated by one junior and one senior prosthetist during the prosthetic alignment of two transfemoral amputees. Results: The support vector machine-based model detected the nominal alignment 92.6 % of the time. The neural network recovered 94.11 % of the angles needed to correct the prosthetic misalignment with a fitting error of 0.51◦. During the validation of the alignment protocol, the computational models and the prosthetists agreed on the alignment assessment. The gait quality evaluated by the prosthetists reached a satisfaction level of 8/10 for the first amputee and 9.6/10 for the second amputee. Importance: The new computational prosthetic alignment protocol is a tool that helps the prosthetist during the prosthetic alignment procedure thereby decreasing the likelihood of gait deviations and musculoskeletal diseases associated with misalignments and consequently improving the amputees-prosthesis adherence.COL0054963COL00155997application/pdfengElsevierOxford, Londreshttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Novel computational protocol to support transfemoral prosthetic alignment procedure using machine learning techniquesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAmputadosAmputeesMiembros ArtificialesArtificial LimbsTeorema de BayesBayes TheoremFenómenos BiomecánicosBiomechanical PhenomenaExtremidadesExtremitiesMarchaGaitDiseño de PrótesisProsthesis DesignTransfemoral amputeesGround reaction forceNeural networksSupport Vector MachineGait Posture131125102Gait & PosturePublicationORIGINALCardenas_Andres_2023_NovelComputationalProtocol.pdfCardenas_Andres_2023_NovelComputationalProtocol.pdfArtículo de investigaciónapplication/pdf2656908https://bibliotecadigital.udea.edu.co/bitstreams/7317ed05-eed3-4d9c-a1e2-15b0ae7151e2/download1fbc8d26a071bfc7672cd94b1af22a14MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/9f3d63f5-f41e-48f0-a19e-e1c0715593bf/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cae38454-203e-4c5a-a3a4-f6fdbea141ec/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTCardenas_Andres_2023_NovelComputationalProtocol.pdf.txtCardenas_Andres_2023_NovelComputationalProtocol.pdf.txtExtracted texttext/plain44228https://bibliotecadigital.udea.edu.co/bitstreams/ce310ef8-9ed4-416e-8a95-d5cbed6a5c97/download479958411fd842c5bfe0396771c8afd4MD56falseAnonymousREADTHUMBNAILCardenas_Andres_2023_NovelComputationalProtocol.pdf.jpgCardenas_Andres_2023_NovelComputationalProtocol.pdf.jpgGenerated Thumbnailimage/jpeg14254https://bibliotecadigital.udea.edu.co/bitstreams/6e8096f2-d799-43a1-ba3e-645747dbe4d5/downloade10a8a6134d359e340dcc94fa50a3113MD57falseAnonymousREAD10495/34831oai:bibliotecadigital.udea.edu.co:10495/348312025-03-26 17:56:04.58https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=