Anomaly classification in industrial Internet of things: A review
ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for da...
- Autores:
-
Rodríguez López, Martha Lucía
Múnera Ramírez, Danny Alexandro
Tobón Vallejo, Diana Patricia
- Tipo de recurso:
- Review article
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35466
- Acceso en línea:
- https://hdl.handle.net/10495/35466
- Palabra clave:
- Anomaly detection (Computer security)
Context-aware computing
Detección de anomalías (Seguridad informática)
Internet de las Cosas
Internet of Things
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_9181eaaf6e31bc927dfe7fec6053343f |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35466 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Anomaly classification in industrial Internet of things: A review |
| title |
Anomaly classification in industrial Internet of things: A review |
| spellingShingle |
Anomaly classification in industrial Internet of things: A review Anomaly detection (Computer security) Context-aware computing Detección de anomalías (Seguridad informática) Internet de las Cosas Internet of Things http://id.loc.gov/authorities/subjects/sh2005007675 http://id.loc.gov/authorities/subjects/sh2008007436 |
| title_short |
Anomaly classification in industrial Internet of things: A review |
| title_full |
Anomaly classification in industrial Internet of things: A review |
| title_fullStr |
Anomaly classification in industrial Internet of things: A review |
| title_full_unstemmed |
Anomaly classification in industrial Internet of things: A review |
| title_sort |
Anomaly classification in industrial Internet of things: A review |
| dc.creator.fl_str_mv |
Rodríguez López, Martha Lucía Múnera Ramírez, Danny Alexandro Tobón Vallejo, Diana Patricia |
| dc.contributor.author.none.fl_str_mv |
Rodríguez López, Martha Lucía Múnera Ramírez, Danny Alexandro Tobón Vallejo, Diana Patricia |
| dc.contributor.researchgroup.spa.fl_str_mv |
Intelligent Information Systems Lab. |
| dc.subject.lcsh.none.fl_str_mv |
Anomaly detection (Computer security) Context-aware computing Detección de anomalías (Seguridad informática) |
| topic |
Anomaly detection (Computer security) Context-aware computing Detección de anomalías (Seguridad informática) Internet de las Cosas Internet of Things http://id.loc.gov/authorities/subjects/sh2005007675 http://id.loc.gov/authorities/subjects/sh2008007436 |
| dc.subject.decs.none.fl_str_mv |
Internet de las Cosas Internet of Things |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh2005007675 http://id.loc.gov/authorities/subjects/sh2008007436 |
| description |
ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-06-13T15:43:15Z |
| dc.date.available.none.fl_str_mv |
2023-06-13T15:43:15Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Artículo de revisión |
| dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_dcae04bc |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ARTREV |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_dcae04bc |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35466 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.iswa.2023.200232 |
| dc.identifier.eissn.none.fl_str_mv |
2667-3053 |
| identifier_str_mv |
M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232. 10.1016/j.iswa.2023.200232 2667-3053 |
| url |
https://hdl.handle.net/10495/35466 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Intell. Syst. with Appl. |
| dc.relation.citationendpage.spa.fl_str_mv |
13 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
18 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Intelligent Systems with Applications |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/ppt |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Ámsterdam, Países Bajos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/c215b692-8db1-4700-9946-e428f110097c/download https://bibliotecadigital.udea.edu.co/bitstreams/48d9471b-86e2-4ff1-9af0-8cd9accb893a/download https://bibliotecadigital.udea.edu.co/bitstreams/4a729488-1d2f-4267-94b1-a82df7e4b25b/download https://bibliotecadigital.udea.edu.co/bitstreams/69e2565d-e9d5-4de8-b1a5-a9ea50a310be/download https://bibliotecadigital.udea.edu.co/bitstreams/b19c7c88-6c09-4cf3-b26f-93957bf91fbd/download |
| bitstream.checksum.fl_str_mv |
e7ca25fbd99d8fc28f51f1e1dda3c00e b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 f1139c7b821dc6a50bda09a21dba1cbc bfac7f2985fef732cc3dc9023ffabe71 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052381117087744 |
| spelling |
Rodríguez López, Martha LucíaMúnera Ramírez, Danny AlexandroTobón Vallejo, Diana PatriciaIntelligent Information Systems Lab.2023-06-13T15:43:15Z2023-06-13T15:43:15Z2023M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232.https://hdl.handle.net/10495/3546610.1016/j.iswa.2023.2002322667-3053ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection.COL002593413 páginasapplication/pptengElsevierÁmsterdam, Países Bajoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Anomaly detection (Computer security)Context-aware computingDetección de anomalías (Seguridad informática)Internet de las CosasInternet of Thingshttp://id.loc.gov/authorities/subjects/sh2005007675http://id.loc.gov/authorities/subjects/sh2008007436Anomaly classification in industrial Internet of things: A reviewArtículo de revisiónhttp://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTREVhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionIntell. Syst. with Appl.13118Intelligent Systems with ApplicationsPublicationORIGINALRodriguezMartha_2023_Anomaly_Classification.pdfRodriguezMartha_2023_Anomaly_Classification.pdfArtículo de investigaciónapplication/pdf1101114https://bibliotecadigital.udea.edu.co/bitstreams/c215b692-8db1-4700-9946-e428f110097c/downloade7ca25fbd99d8fc28f51f1e1dda3c00eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/48d9471b-86e2-4ff1-9af0-8cd9accb893a/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/4a729488-1d2f-4267-94b1-a82df7e4b25b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRodriguezMartha_2023_Anomaly_Classification.pdf.txtRodriguezMartha_2023_Anomaly_Classification.pdf.txtExtracted texttext/plain100776https://bibliotecadigital.udea.edu.co/bitstreams/69e2565d-e9d5-4de8-b1a5-a9ea50a310be/downloadf1139c7b821dc6a50bda09a21dba1cbcMD54falseAnonymousREADTHUMBNAILRodriguezMartha_2023_Anomaly_Classification.pdf.jpgRodriguezMartha_2023_Anomaly_Classification.pdf.jpgGenerated Thumbnailimage/jpeg15360https://bibliotecadigital.udea.edu.co/bitstreams/b19c7c88-6c09-4cf3-b26f-93957bf91fbd/downloadbfac7f2985fef732cc3dc9023ffabe71MD55falseAnonymousREAD10495/35466oai:bibliotecadigital.udea.edu.co:10495/354662025-03-26 21:24:07.989http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
