Anomaly classification in industrial Internet of things: A review

ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for da...

Full description

Autores:
Rodríguez López, Martha Lucía
Múnera Ramírez, Danny Alexandro
Tobón Vallejo, Diana Patricia
Tipo de recurso:
Review article
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35466
Acceso en línea:
https://hdl.handle.net/10495/35466
Palabra clave:
Anomaly detection (Computer security)
Context-aware computing
Detección de anomalías (Seguridad informática)
Internet de las Cosas
Internet of Things
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_9181eaaf6e31bc927dfe7fec6053343f
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35466
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Anomaly classification in industrial Internet of things: A review
title Anomaly classification in industrial Internet of things: A review
spellingShingle Anomaly classification in industrial Internet of things: A review
Anomaly detection (Computer security)
Context-aware computing
Detección de anomalías (Seguridad informática)
Internet de las Cosas
Internet of Things
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
title_short Anomaly classification in industrial Internet of things: A review
title_full Anomaly classification in industrial Internet of things: A review
title_fullStr Anomaly classification in industrial Internet of things: A review
title_full_unstemmed Anomaly classification in industrial Internet of things: A review
title_sort Anomaly classification in industrial Internet of things: A review
dc.creator.fl_str_mv Rodríguez López, Martha Lucía
Múnera Ramírez, Danny Alexandro
Tobón Vallejo, Diana Patricia
dc.contributor.author.none.fl_str_mv Rodríguez López, Martha Lucía
Múnera Ramírez, Danny Alexandro
Tobón Vallejo, Diana Patricia
dc.contributor.researchgroup.spa.fl_str_mv Intelligent Information Systems Lab.
dc.subject.lcsh.none.fl_str_mv Anomaly detection (Computer security)
Context-aware computing
Detección de anomalías (Seguridad informática)
topic Anomaly detection (Computer security)
Context-aware computing
Detección de anomalías (Seguridad informática)
Internet de las Cosas
Internet of Things
http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
dc.subject.decs.none.fl_str_mv Internet de las Cosas
Internet of Things
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2005007675
http://id.loc.gov/authorities/subjects/sh2008007436
description ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-13T15:43:15Z
dc.date.available.none.fl_str_mv 2023-06-13T15:43:15Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revisión
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_dcae04bc
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ARTREV
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_dcae04bc
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35466
dc.identifier.doi.none.fl_str_mv 10.1016/j.iswa.2023.200232
dc.identifier.eissn.none.fl_str_mv 2667-3053
identifier_str_mv M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232.
10.1016/j.iswa.2023.200232
2667-3053
url https://hdl.handle.net/10495/35466
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Intell. Syst. with Appl.
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.ispartofjournal.spa.fl_str_mv Intelligent Systems with Applications
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/ppt
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Ámsterdam, Países Bajos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/c215b692-8db1-4700-9946-e428f110097c/download
https://bibliotecadigital.udea.edu.co/bitstreams/48d9471b-86e2-4ff1-9af0-8cd9accb893a/download
https://bibliotecadigital.udea.edu.co/bitstreams/4a729488-1d2f-4267-94b1-a82df7e4b25b/download
https://bibliotecadigital.udea.edu.co/bitstreams/69e2565d-e9d5-4de8-b1a5-a9ea50a310be/download
https://bibliotecadigital.udea.edu.co/bitstreams/b19c7c88-6c09-4cf3-b26f-93957bf91fbd/download
bitstream.checksum.fl_str_mv e7ca25fbd99d8fc28f51f1e1dda3c00e
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
f1139c7b821dc6a50bda09a21dba1cbc
bfac7f2985fef732cc3dc9023ffabe71
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052381117087744
spelling Rodríguez López, Martha LucíaMúnera Ramírez, Danny AlexandroTobón Vallejo, Diana PatriciaIntelligent Information Systems Lab.2023-06-13T15:43:15Z2023-06-13T15:43:15Z2023M. Rodríguez, D. P. Tobón, y D. Múnera, «Anomaly classification in industrial Internet of things: A review», Intell. Syst. with Appl., vol. 18, p. 200232, 2023, doi: https://doi.org/10.1016/j.iswa.2023.200232.https://hdl.handle.net/10495/3546610.1016/j.iswa.2023.2002322667-3053ABSTRACT: The fourth industrial revolution (Industry 4.0) has the potential to provide real-time, secure, and autonomous manufacturing environments. The Industrial Internet of Things (IIoT) is a powerful tool to make this promise a reality because it can provide enhanced wireless connectivity for data collection and processing in interconnected plants. Implementing IIoT systems entails using heterogeneous technologies, which collect incomplete, unstructured, redundant, and noisy data. This condition raises security flaws and data collection issues that affect the data quality of the systems. One effective way to identify poor-quality data is through anomaly detection systems, which provide specific information that helps to decide whether a device is malfunctioning, a critical event is occurring, or the system's security is being breached. Using early anomaly detection mechanisms prevents the IIoT system from being influenced by anomalies in decision-making. Identifying the origin of the anomaly (e.g., event, failure, or attack) supports the user in making effective decisions about handling the data or identifying the device that exhibits abnormal behavior. However, implementing anomaly detection systems is not easy since various factors must be defined, such as what method to use for the best performance. What information must we process to detect and classify anomalies? Which devices have to be monitored to detect anomalies? Which device of the IIoT system will be in charge of executing the anomaly detection algorithm? Hence, in this paper, we performed a state-of-the-art review, including 99 different articles aiming to identify the answer of various authors to these questions. We also highlighted works on IIoT anomaly detection and classification, used methods, and open challenges. We found that automatic anomaly classification in IIoT is an open research topic, and additional information from the context of the application is rarely used to facilitate anomaly detection.COL002593413 páginasapplication/pptengElsevierÁmsterdam, Países Bajoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Anomaly detection (Computer security)Context-aware computingDetección de anomalías (Seguridad informática)Internet de las CosasInternet of Thingshttp://id.loc.gov/authorities/subjects/sh2005007675http://id.loc.gov/authorities/subjects/sh2008007436Anomaly classification in industrial Internet of things: A reviewArtículo de revisiónhttp://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTREVhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionIntell. Syst. with Appl.13118Intelligent Systems with ApplicationsPublicationORIGINALRodriguezMartha_2023_Anomaly_Classification.pdfRodriguezMartha_2023_Anomaly_Classification.pdfArtículo de investigaciónapplication/pdf1101114https://bibliotecadigital.udea.edu.co/bitstreams/c215b692-8db1-4700-9946-e428f110097c/downloade7ca25fbd99d8fc28f51f1e1dda3c00eMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/48d9471b-86e2-4ff1-9af0-8cd9accb893a/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/4a729488-1d2f-4267-94b1-a82df7e4b25b/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRodriguezMartha_2023_Anomaly_Classification.pdf.txtRodriguezMartha_2023_Anomaly_Classification.pdf.txtExtracted texttext/plain100776https://bibliotecadigital.udea.edu.co/bitstreams/69e2565d-e9d5-4de8-b1a5-a9ea50a310be/downloadf1139c7b821dc6a50bda09a21dba1cbcMD54falseAnonymousREADTHUMBNAILRodriguezMartha_2023_Anomaly_Classification.pdf.jpgRodriguezMartha_2023_Anomaly_Classification.pdf.jpgGenerated Thumbnailimage/jpeg15360https://bibliotecadigital.udea.edu.co/bitstreams/b19c7c88-6c09-4cf3-b26f-93957bf91fbd/downloadbfac7f2985fef732cc3dc9023ffabe71MD55falseAnonymousREAD10495/35466oai:bibliotecadigital.udea.edu.co:10495/354662025-03-26 21:24:07.989http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=