Zeolite Y-based catalysts for efficient epoxidation of R-(+)-Limonene: Insights into the structure-activity relationship

Parent, hierarchical, and metal-modified hierarchical zeolite Y were investigated as heterogeneous catalysts in the R-(+)-limonene epoxidation, a catalytic route for synthesizing precursors of bio-polycarbonates, an alternative to isocyanate polyurethanes. The fresh catalysts underwent detailed char...

Full description

Autores:
Gallego Villada, Luis Alfonso
Alarcón Durango, Edwin Alexis
Mäki-Arvela, Päivi
Kumar, Narendra
Vajglová, Zuzana
Tirri, Teija
Angervo, Ilari
Lassfolk, Robert
Lastusaari, Mika
Murzin, Dmitry Yu
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46668
Acceso en línea:
https://hdl.handle.net/10495/46668
Palabra clave:
Limoneno
Limonene
Zeolitas
Zeolites
Catalizadores
Catalysts
https://id.nlm.nih.gov/mesh/D000077222
Rights
openAccess
License
http://creativecommons.org/licenses/by/4.0/
Description
Summary:Parent, hierarchical, and metal-modified hierarchical zeolite Y were investigated as heterogeneous catalysts in the R-(+)-limonene epoxidation, a catalytic route for synthesizing precursors of bio-polycarbonates, an alternative to isocyanate polyurethanes. The fresh catalysts underwent detailed characterization using XRD, N2 physisorption, TEM, SEM-EDX, pyridine-FTIR, NH3-TPD, CO2-TPD, UV–Vis-DRS, and solid-state NMR. Spent materials were investigated by TPO-MS and TGA, confirming low coke formation on the catalytic surface. The most active material was K–Sn-modified dealuminated zeolite Y, reflected in a high turnover frequency (TOF) of 96 h−1. This material exhibited the lowest Brønsted to Lewis acidity ratio (0.1), the highest mesoporosity fraction (43%), and the lowest total surface area (465 m2 g−1). Aprotic polar solvents with high polarity and medium donor capacity appeared suitable for limonene epoxidation. Limonene conversion of ca. 97% was reached at 70 °C, H2O2: limonene molar ratio = 7, and acetonitrile as a solvent, while selectivity to total monoepoxides exhibited values up to 96% under different reaction conditions. Hydration of internal epoxides to limonene diol was favored at high temperatures and high H2O2/limonene molar ratios. The efficiency of H2O2 reached maximum values of about 85% at low H2O2 amounts, while no significant influence was observed for temperature, catalyst amount, and the initial concentration of limonene. A plausible reaction mechanism was proposed for the R-(+)-limonene epoxidation with H2O2 based on the experimental findings.