Optical biosensor for on-line monitoring of organophosphate pesticides in water
ABSTRACT : Water sources in rural areas are exposed to Chlorpyrifos (CPF) and other harmful organophosphate pesticides (OPs) that should be detected before human consumption, and biosensors have emerged as promising alternatives. The application of nanomaterials, including carbon quantum dots (CD),...
- Autores:
-
Gaviria Arroyave, Maria Isabel
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/37187
- Acceso en línea:
- https://hdl.handle.net/10495/37187
- Palabra clave:
- Nanostructures
Nanoestructuras
Biosensing Techniques
Técnicas Biosensibles
Pesticides
Plaguicidas
Chlorpyrifos
Cloropirifos
Acetylcholinesterase
Acetilcolinesterasa
Surface Waters
Aguas Superficiales
Carbon dots
Nanomaterial
Fluorescent biosensor
Aptamer
Prototype
Superficial water
- Rights
- embargoedAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_8d60358d5e69a17bf1ac3b700ac608c3 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/37187 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| dc.title.translated.spa.fl_str_mv |
Biosensor óptico para el seguimiento en línea de pesticidas organofosforados |
| title |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| spellingShingle |
Optical biosensor for on-line monitoring of organophosphate pesticides in water Nanostructures Nanoestructuras Biosensing Techniques Técnicas Biosensibles Pesticides Plaguicidas Chlorpyrifos Cloropirifos Acetylcholinesterase Acetilcolinesterasa Surface Waters Aguas Superficiales Carbon dots Nanomaterial Fluorescent biosensor Aptamer Prototype Superficial water |
| title_short |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| title_full |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| title_fullStr |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| title_full_unstemmed |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| title_sort |
Optical biosensor for on-line monitoring of organophosphate pesticides in water |
| dc.creator.fl_str_mv |
Gaviria Arroyave, Maria Isabel |
| dc.contributor.advisor.none.fl_str_mv |
Peñuela Mesa, Gustavo Antonio Cano, Juan Bernardo |
| dc.contributor.author.none.fl_str_mv |
Gaviria Arroyave, Maria Isabel |
| dc.contributor.researchgroup.spa.fl_str_mv |
Diagnóstico y Control de la Contaminación |
| dc.subject.decs.none.fl_str_mv |
Nanostructures Nanoestructuras Biosensing Techniques Técnicas Biosensibles Pesticides Plaguicidas Chlorpyrifos Cloropirifos Acetylcholinesterase Acetilcolinesterasa Surface Waters Aguas Superficiales |
| topic |
Nanostructures Nanoestructuras Biosensing Techniques Técnicas Biosensibles Pesticides Plaguicidas Chlorpyrifos Cloropirifos Acetylcholinesterase Acetilcolinesterasa Surface Waters Aguas Superficiales Carbon dots Nanomaterial Fluorescent biosensor Aptamer Prototype Superficial water |
| dc.subject.proposal.spa.fl_str_mv |
Carbon dots Nanomaterial Fluorescent biosensor Aptamer Prototype Superficial water |
| description |
ABSTRACT : Water sources in rural areas are exposed to Chlorpyrifos (CPF) and other harmful organophosphate pesticides (OPs) that should be detected before human consumption, and biosensors have emerged as promising alternatives. The application of nanomaterials, including carbon quantum dots (CD), can significantly improve the performance of optical biosensors. In this work, naturally fluorescent and non-toxic CD were synthesized from African oil palm biochar, in cooperation with the GIBEC research group from Universidad EIA. The CD were integrated and evaluated with two biomolecules and the systems were modulated with Graphene Oxide (GO) producing two fluorescent probes. The first system was developed based on Acetylcholinesterase enzyme (AChE); this biosensor was assessed under pure chlorpyrifos (CPF), but also under a commercial formulation called Lorsban® obtaining a limit of detection (LOD) as low as 0.13 µg L-1 and 2.05 µg L-1 for CPF and Lorsban® respectively. The second system employed a DNA aptamer to detect CPF and, showed a LOD as low as 0.01 µg L-1 with great selectivity. To advance in the field application of fluorescent probes, a portable device was designed, constructed, and evaluated in cooperation with the GIMEL research group from Universidad de Antioquia. Finally, the AChE system was selected for the evaluation of 9 superficial water samples from different rural locations of Antioquia, Colombia, using the portable prototype. The results showed that some physicochemical parameters of natural water sources have an influence on the performance of the system. However, the prototype could detect CPF in real samples from 1 µg L-1 and using only 150 µL of the sample. The advantages of the developed nanostructured fluorescent probes using along with a portable device tailored-made for the application, open the way for future commercial applications. To the best of our knowledge, this is one of the few works reporting the integration of nanomaterials with different biomolecules in optical systems for the detection of pesticide formulations in real prototypes, with promising results. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-11-07T15:47:06Z |
| dc.date.available.none.fl_str_mv |
2023-11-07T15:47:06Z |
| dc.date.issued.none.fl_str_mv |
2023 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/37187 |
| url |
https://hdl.handle.net/10495/37187 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_f1cf |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.extent.spa.fl_str_mv |
175 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería Ambiental |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/1e75ad19-6732-40a7-bbb0-5045ae7aa1ef/download https://bibliotecadigital.udea.edu.co/bitstreams/a00e0ed0-39fd-42c3-8986-bdbf78ffd48f/download https://bibliotecadigital.udea.edu.co/bitstreams/1a808830-5872-453c-830e-4373ced0edf1/download https://bibliotecadigital.udea.edu.co/bitstreams/624077a5-e3d1-4388-a770-cee83aae7907/download |
| bitstream.checksum.fl_str_mv |
b268a9dab31627d966ae572ebdc8c48e 8a4605be74aa9ea9d79846c1fba20a33 fd60898d539de6da138ec095106b98d2 00d6b8516f4e5aacc45daeea9647b5c6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052602732576768 |
| spelling |
Peñuela Mesa, Gustavo AntonioCano, Juan BernardoGaviria Arroyave, Maria IsabelDiagnóstico y Control de la Contaminación2023-11-07T15:47:06Z2023-11-07T15:47:06Z2023https://hdl.handle.net/10495/37187ABSTRACT : Water sources in rural areas are exposed to Chlorpyrifos (CPF) and other harmful organophosphate pesticides (OPs) that should be detected before human consumption, and biosensors have emerged as promising alternatives. The application of nanomaterials, including carbon quantum dots (CD), can significantly improve the performance of optical biosensors. In this work, naturally fluorescent and non-toxic CD were synthesized from African oil palm biochar, in cooperation with the GIBEC research group from Universidad EIA. The CD were integrated and evaluated with two biomolecules and the systems were modulated with Graphene Oxide (GO) producing two fluorescent probes. The first system was developed based on Acetylcholinesterase enzyme (AChE); this biosensor was assessed under pure chlorpyrifos (CPF), but also under a commercial formulation called Lorsban® obtaining a limit of detection (LOD) as low as 0.13 µg L-1 and 2.05 µg L-1 for CPF and Lorsban® respectively. The second system employed a DNA aptamer to detect CPF and, showed a LOD as low as 0.01 µg L-1 with great selectivity. To advance in the field application of fluorescent probes, a portable device was designed, constructed, and evaluated in cooperation with the GIMEL research group from Universidad de Antioquia. Finally, the AChE system was selected for the evaluation of 9 superficial water samples from different rural locations of Antioquia, Colombia, using the portable prototype. The results showed that some physicochemical parameters of natural water sources have an influence on the performance of the system. However, the prototype could detect CPF in real samples from 1 µg L-1 and using only 150 µL of the sample. The advantages of the developed nanostructured fluorescent probes using along with a portable device tailored-made for the application, open the way for future commercial applications. To the best of our knowledge, this is one of the few works reporting the integration of nanomaterials with different biomolecules in optical systems for the detection of pesticide formulations in real prototypes, with promising results.RESUMEN : Las fuentes de agua en zonas rurales están expuestas a clorpirifos (CPF) y otros pesticidas organofosforados (OP) nocivos que deben detectarse antes del consumo humano, y los biosensores han surgido como alternativas prometedoras. La aplicación de nanomateriales, incluidos los puntos cuánticos de carbono (CD), pueden mejorar significativamente el rendimiento de los biosensores ópticos. En este trabajo, se sintetizaron CD, los cuales son naturalmente fluorescentes y no tóxicos a partir de biochar de Palma Africana de aceite, en cooperación con el grupo de investigación GIBEC de la Universidad EIA. Los CD fueron integrados y evaluados con dos biomoléculas y los sistemas fueron modulados con Óxido de Grafeno (GO) produciendo dos sondas fluorescentes. El primer sistema fue desarrollado basado en la enzima Acetilcolinesterasa (AChE); este biosensor fue evaluado para detectar CPF puro, pero también bajo una formulación comercial llamada Lorsban® obteniendo un límite de detección (LOD) tan bajo como 0.13 µg L-1 y 2.05 µg L-1 para CPF y Lorsban® respectivamente. El segundo sistema empleó un aptámero de ADN para detectar CPF y mostró un LOD tan bajo como 0.01 µg L-1 con gran selectividad. Para avanzar en la aplicación de campo de las sondas fluorescentes, se diseñó, construyó y evaluó un dispositivo portátil en colaboración con el grupo de investigación GIMEL de la Universidad de Antioquia. Finalmente, se seleccionó el sistema enzimático (AChE) para la evaluación de 9 muestras de agua superficial de diferentes localidades rurales de Antioquia, Colombia, utilizando el prototipo portátil. Los resultados mostraron que algunos parámetros fisicoquímicos de las fuentes naturales de agua tienen influencia en el desempeño del sistema. Sin embargo, el prototipo pudo detectar CPF en muestras reales a partir de 1 µg L-1 y utilizando solo 150 µL de la muestra. Las ventajas de utilizar las sondas fluorescentes nanoestructuradas desarrolladas junto con un dispositivo portátil hecho a medida, abren el camino para futuras aplicaciones comerciales. Hasta donde sabemos, este es uno de los pocos trabajos que reportan la integración de nanomateriales con diferentes biomoléculas en sistemas ópticos para la detección de formulaciones de pesticidas en prototipos reales, con resultados prometedores.COL0040402TESIS CON DISTINCIÓN: Magna Cum Laude (sobresaliente)DoctoradoDoctor en Ingeniería ambiental175application/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Ambientalhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfOptical biosensor for on-line monitoring of organophosphate pesticides in waterBiosensor óptico para el seguimiento en línea de pesticidas organofosforadosTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftNanostructuresNanoestructurasBiosensing TechniquesTécnicas BiosensiblesPesticidesPlaguicidasChlorpyrifosCloropirifosAcetylcholinesteraseAcetilcolinesterasaSurface WatersAguas SuperficialesCarbon dotsNanomaterialFluorescent biosensorAptamerPrototypeSuperficial waterPublicationORIGINALGaviraMaria_2023_OpticalBiosensorPesticides.pdfGaviraMaria_2023_OpticalBiosensorPesticides.pdfTesis doctoralapplication/pdf12226699https://bibliotecadigital.udea.edu.co/bitstreams/1e75ad19-6732-40a7-bbb0-5045ae7aa1ef/downloadb268a9dab31627d966ae572ebdc8c48eMD51trueAnonymousREAD2024-12-31LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/a00e0ed0-39fd-42c3-8986-bdbf78ffd48f/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADTEXTGaviraMaria_2023_OpticalBiosensorPesticides.pdf.txtGaviraMaria_2023_OpticalBiosensorPesticides.pdf.txtExtracted texttext/plain100215https://bibliotecadigital.udea.edu.co/bitstreams/1a808830-5872-453c-830e-4373ced0edf1/downloadfd60898d539de6da138ec095106b98d2MD55falseAnonymousREAD2024-12-31THUMBNAILGaviraMaria_2023_OpticalBiosensorPesticides.pdf.jpgGaviraMaria_2023_OpticalBiosensorPesticides.pdf.jpgGenerated Thumbnailimage/jpeg6608https://bibliotecadigital.udea.edu.co/bitstreams/624077a5-e3d1-4388-a770-cee83aae7907/download00d6b8516f4e5aacc45daeea9647b5c6MD56falseAnonymousREAD2024-12-3110495/37187oai:bibliotecadigital.udea.edu.co:10495/371872025-03-27 00:54:18.614https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
