Engineering iron oxide nanoparticles for biomedicine and bioengineering applications

ABSTRACT: In the present study the one-step coprecipitation method is used to obtain magnetic nanoparticles at controlled pH of 10 and 12, and surfactant concentration of 1% and 3%(m/m). The surfactant is sodium polyacrylate(PS), biocompatible and biodegradable, necessary attributes for biological a...

Full description

Autores:
Urquijo Morales, Jeaneth Patricia
Casanova Yepes, Herley Fernando
Morales Aramburo, Álvaro Luis
Zysler, Roberto D.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/5987
Acceso en línea:
http://hdl.handle.net/10495/5987
Palabra clave:
Nanopartículas Magnéticas de Óxido de Hierro
Magnetic Iron Oxide Nanoparticles
Espectroscopia Mössbauer
Mossbauer spectroscopy
Unidades magnéticas
Magnetic units
Poliacrilato de sodio
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_8c50db580436f65fc67a61d3cefc8a46
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/5987
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
dc.title.translated.spa.fl_str_mv Diseño de nanopartículas magnéticas para aplicaciones en biomedicina y bioingeniería
title Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
spellingShingle Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
Nanopartículas Magnéticas de Óxido de Hierro
Magnetic Iron Oxide Nanoparticles
Espectroscopia Mössbauer
Mossbauer spectroscopy
Unidades magnéticas
Magnetic units
Poliacrilato de sodio
title_short Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
title_full Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
title_fullStr Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
title_full_unstemmed Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
title_sort Engineering iron oxide nanoparticles for biomedicine and bioengineering applications
dc.creator.fl_str_mv Urquijo Morales, Jeaneth Patricia
Casanova Yepes, Herley Fernando
Morales Aramburo, Álvaro Luis
Zysler, Roberto D.
dc.contributor.author.none.fl_str_mv Urquijo Morales, Jeaneth Patricia
Casanova Yepes, Herley Fernando
Morales Aramburo, Álvaro Luis
Zysler, Roberto D.
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Coloides
Grupo Estado Sólido
dc.subject.decs.none.fl_str_mv Nanopartículas Magnéticas de Óxido de Hierro
Magnetic Iron Oxide Nanoparticles
topic Nanopartículas Magnéticas de Óxido de Hierro
Magnetic Iron Oxide Nanoparticles
Espectroscopia Mössbauer
Mossbauer spectroscopy
Unidades magnéticas
Magnetic units
Poliacrilato de sodio
dc.subject.lemb.none.fl_str_mv Espectroscopia Mössbauer
Mossbauer spectroscopy
Unidades magnéticas
Magnetic units
dc.subject.proposal.spa.fl_str_mv Poliacrilato de sodio
description ABSTRACT: In the present study the one-step coprecipitation method is used to obtain magnetic nanoparticles at controlled pH of 10 and 12, and surfactant concentration of 1% and 3%(m/m). The surfactant is sodium polyacrylate(PS), biocompatible and biodegradable, necessary attributes for biological applications. The magnetic nanoparticles have a magnetite core, and a shell of maghemite surrounded by a shell of polymer. The maghemite layer is smaller for large surfactant concentration(3%) and pH 10. The TEM images confirm the particle size distribution in the average range of 5-10 nm. Mössbauer results at 80 K showed line shapes dominated by magnetic relaxation effects with sextets and combinations of sextets and doublets for pH 12. The doublet features dominated the samples obtained at pH 10. The interactions of the surfactant with the nanoparticle surface, mainly with the Fe3+, is strong showing at least two surfactant layers, one layer directly over the nanoparticle surface and another layer resting over the inner layer. FTIR confirmed the attachment of the surfactant to the magnetic nanoparticle surface. The nanoparticles showed superparamagnetic behavior at room temperature and ferromagnetic properties at 5 K. The saturation magnetization presented lower values than reported bulk systems due to the presence of a large layer of maghemite. The very close particle size for all samples gave indication that the particle growth was dominated by the surface properties of the nanoparticles and that the pH and surfactant concentration did not affect importantly the growth process.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2017-01-10T17:10:15Z
dc.date.available.none.fl_str_mv 2017-01-10T17:10:15Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv J. P. Urquijo, H. F. Casanova, A. L. Morales and R. D. Zysler, "Engineering iron oxide nanoparticles for biomedicine and bioengineering applications", Rev. Fac. Ing. Univ. Antioquia, no. 71, pp. 230-243, 2014.
dc.identifier.issn.none.fl_str_mv 0120-6230
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/5987
dc.identifier.eissn.none.fl_str_mv 2422-2843
identifier_str_mv J. P. Urquijo, H. F. Casanova, A. L. Morales and R. D. Zysler, "Engineering iron oxide nanoparticles for biomedicine and bioengineering applications", Rev. Fac. Ing. Univ. Antioquia, no. 71, pp. 230-243, 2014.
0120-6230
2422-2843
url http://hdl.handle.net/10495/5987
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Rev. Fac. Ing. Univ. Antioquia
dc.relation.citationendpage.spa.fl_str_mv 243
dc.relation.citationissue.spa.fl_str_mv 71
dc.relation.citationstartpage.spa.fl_str_mv 230
dc.relation.ispartofjournal.spa.fl_str_mv Revista Facultad de Ingeniería
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.accessrights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/2.5/co/
Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia, Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/fa70e39a-0b90-47e8-80bd-3cadef0aab69/download
https://bibliotecadigital.udea.edu.co/bitstreams/2d170c98-de7d-4e58-91ce-99b3fb88652b/download
https://bibliotecadigital.udea.edu.co/bitstreams/e17266a3-1bc5-4f64-aeaa-cc0a2d23590b/download
https://bibliotecadigital.udea.edu.co/bitstreams/79dedad3-c485-4652-93c3-e2f29558972b/download
https://bibliotecadigital.udea.edu.co/bitstreams/96252cb6-3b95-4c37-98fc-4b81e31fb77e/download
https://bibliotecadigital.udea.edu.co/bitstreams/1b90c25b-d8db-4375-9556-014c444827a8/download
https://bibliotecadigital.udea.edu.co/bitstreams/0bf9fcdc-8e44-40d2-87eb-baca34a0089b/download
bitstream.checksum.fl_str_mv dd8c7d03eba42e5613aa3e00b3cdfda2
8a4605be74aa9ea9d79846c1fba20a33
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
c12bf11602c7296fdaf2cf23bf5806ac
d34fe520116d75e5d4e5e963db886009
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052629778497536
spelling Urquijo Morales, Jeaneth PatriciaCasanova Yepes, Herley FernandoMorales Aramburo, Álvaro LuisZysler, Roberto D.Grupo de ColoidesGrupo Estado Sólido2017-01-10T17:10:15Z2017-01-10T17:10:15Z2014J. P. Urquijo, H. F. Casanova, A. L. Morales and R. D. Zysler, "Engineering iron oxide nanoparticles for biomedicine and bioengineering applications", Rev. Fac. Ing. Univ. Antioquia, no. 71, pp. 230-243, 2014.0120-6230http://hdl.handle.net/10495/59872422-2843ABSTRACT: In the present study the one-step coprecipitation method is used to obtain magnetic nanoparticles at controlled pH of 10 and 12, and surfactant concentration of 1% and 3%(m/m). The surfactant is sodium polyacrylate(PS), biocompatible and biodegradable, necessary attributes for biological applications. The magnetic nanoparticles have a magnetite core, and a shell of maghemite surrounded by a shell of polymer. The maghemite layer is smaller for large surfactant concentration(3%) and pH 10. The TEM images confirm the particle size distribution in the average range of 5-10 nm. Mössbauer results at 80 K showed line shapes dominated by magnetic relaxation effects with sextets and combinations of sextets and doublets for pH 12. The doublet features dominated the samples obtained at pH 10. The interactions of the surfactant with the nanoparticle surface, mainly with the Fe3+, is strong showing at least two surfactant layers, one layer directly over the nanoparticle surface and another layer resting over the inner layer. FTIR confirmed the attachment of the surfactant to the magnetic nanoparticle surface. The nanoparticles showed superparamagnetic behavior at room temperature and ferromagnetic properties at 5 K. The saturation magnetization presented lower values than reported bulk systems due to the presence of a large layer of maghemite. The very close particle size for all samples gave indication that the particle growth was dominated by the surface properties of the nanoparticles and that the pH and surfactant concentration did not affect importantly the growth process.RESUMEN: Se usó el método de coprecipitación en un solo paso controlando el pH a 10 y 12 y en concentraciones de poliacrilato(PS) de 1% y 3%(m/m). El surfactante es biocompatible y biodegradable, atributos necesarios para su uso en aplicaciones biológicas. Las nanopartículas magnéticas están formadas por una coraza interna de magnetita, una capa de maghemita y una capa externa del polímero. La capa de maghemita es pequeña para la concentración de 3% y pH 10. Las imágenes de TEM confirman la distribución de tamaños de partícula en el rango promedio de 5-10 nm. Los resultados Mössbauer a 80 K mostraron formas de línea dominadas por efectos de relajación magnética en forma de sextetos y combinanciones de sextetos y dobletes; estos dominaron a pH 10. Las interacciones del polímero con la superficie de las nanopartículas, principalmente con el Fe3+, es fuerte mostrando al menos dos capas del polímero sobre ellas. Las medidas magnéticas muestran un comportamiento superparamagnético a temperatura ambiente y ferrimagnético a 5 k. La magnetización de saturación presentó valores menores que las repotadas para volúmenes grandes debido a la caapa de maghemita presente. El tamaño de partícula obtenido para todas las muestras es muy cercano entre si indicando que el crecimiento de las partículas fue dominado por las propiedades de la superficie de estas y en menor grado por las condiciones de concentración y pH usadas.COL0008138COL0007874application/pdfengUniversidad de Antioquia, Facultad de IngenieríaMedellín, Colombiahttps://creativecommons.org/licenses/by-nc-sa/4.0/https://creativecommons.org/licenses/by-nc-sa/2.5/co/Atribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Engineering iron oxide nanoparticles for biomedicine and bioengineering applicationsDiseño de nanopartículas magnéticas para aplicaciones en biomedicina y bioingenieríaArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionNanopartículas Magnéticas de Óxido de HierroMagnetic Iron Oxide NanoparticlesEspectroscopia MössbauerMossbauer spectroscopyUnidades magnéticasMagnetic unitsPoliacrilato de sodioRev. Fac. Ing. Univ. Antioquia24371230Revista Facultad de IngenieríaPublicationORIGINALUrquijoJeaneth_2014_EngineeringIronOxide.pdfUrquijoJeaneth_2014_EngineeringIronOxide.pdfArtículo de investigaciónapplication/pdf2974752https://bibliotecadigital.udea.edu.co/bitstreams/fa70e39a-0b90-47e8-80bd-3cadef0aab69/downloaddd8c7d03eba42e5613aa3e00b3cdfda2MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/2d170c98-de7d-4e58-91ce-99b3fb88652b/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/e17266a3-1bc5-4f64-aeaa-cc0a2d23590b/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/79dedad3-c485-4652-93c3-e2f29558972b/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/96252cb6-3b95-4c37-98fc-4b81e31fb77e/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADTEXTUrquijoJeaneth_2014_EngineeringIronOxide.pdf.txtUrquijoJeaneth_2014_EngineeringIronOxide.pdf.txtExtracted texttext/plain44458https://bibliotecadigital.udea.edu.co/bitstreams/1b90c25b-d8db-4375-9556-014c444827a8/downloadc12bf11602c7296fdaf2cf23bf5806acMD56falseAnonymousREADTHUMBNAILUrquijoJeaneth_2014_EngineeringIronOxide.pdf.jpgUrquijoJeaneth_2014_EngineeringIronOxide.pdf.jpgGenerated Thumbnailimage/jpeg11784https://bibliotecadigital.udea.edu.co/bitstreams/0bf9fcdc-8e44-40d2-87eb-baca34a0089b/downloadd34fe520116d75e5d4e5e963db886009MD57falseAnonymousREAD10495/5987oai:bibliotecadigital.udea.edu.co:10495/59872025-03-27 01:19:10.582https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=