Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It...
- Autores:
-
López, José David
Friston, Karl J.
Espinosa Oviedo, Jairo José
Litvak, Vladimir
Barnes, Gareth Robert
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35604
- Acceso en línea:
- https://hdl.handle.net/10495/35604
- Palabra clave:
- Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
MEG/EEG inverse problem
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
