Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM

ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It...

Full description

Autores:
López, José David
Friston, Karl J.
Espinosa Oviedo, Jairo José
Litvak, Vladimir
Barnes, Gareth Robert
Tipo de recurso:
Article of investigation
Fecha de publicación:
2014
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35604
Acceso en línea:
https://hdl.handle.net/10495/35604
Palabra clave:
Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
MEG/EEG inverse problem
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_8b01ee9d1440046e287f75713760df63
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35604
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
title Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
spellingShingle Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
MEG/EEG inverse problem
title_short Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
title_full Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
title_fullStr Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
title_full_unstemmed Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
title_sort Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
dc.creator.fl_str_mv López, José David
Friston, Karl J.
Espinosa Oviedo, Jairo José
Litvak, Vladimir
Barnes, Gareth Robert
dc.contributor.author.none.fl_str_mv López, José David
Friston, Karl J.
Espinosa Oviedo, Jairo José
Litvak, Vladimir
Barnes, Gareth Robert
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.decs.none.fl_str_mv Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
topic Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
MEG/EEG inverse problem
dc.subject.proposal.spa.fl_str_mv MEG/EEG inverse problem
description ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2023-06-23T15:48:46Z
dc.date.available.none.fl_str_mv 2023-06-23T15:48:46Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.002
dc.identifier.issn.none.fl_str_mv 1053-8119
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35604
dc.identifier.doi.none.fl_str_mv 10.1016/j.neuroimage.2013.09.002
identifier_str_mv López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.002
1053-8119
10.1016/j.neuroimage.2013.09.002
url https://hdl.handle.net/10495/35604
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv NeuroImage
dc.relation.citationendpage.spa.fl_str_mv 487
dc.relation.citationissue.spa.fl_str_mv 100
dc.relation.citationstartpage.spa.fl_str_mv 476
dc.relation.citationvolume.spa.fl_str_mv 84
dc.relation.ispartofjournal.spa.fl_str_mv NeuroImage
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/9a723652-f4dc-431d-b7b5-b50d8c260b54/download
https://bibliotecadigital.udea.edu.co/bitstreams/b88dabe1-4794-438f-9858-13c1f7b130d2/download
https://bibliotecadigital.udea.edu.co/bitstreams/af8e96ad-afaa-4c5b-b308-df0279c403bd/download
https://bibliotecadigital.udea.edu.co/bitstreams/de52030c-8e05-4051-9e92-5c720b10070a/download
https://bibliotecadigital.udea.edu.co/bitstreams/bc7dd38a-b450-42b7-a7c5-f7d8863ebb4f/download
bitstream.checksum.fl_str_mv 98c29f7428717da19f266a938099321a
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
c62f3934c5db134b2089bf86e10bb14a
2fc0edccc71a6bc74474c1957e9e0ec2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052591921758208
spelling López, José DavidFriston, Karl J.Espinosa Oviedo, Jairo JoséLitvak, VladimirBarnes, Gareth RobertSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2023-06-23T15:48:46Z2023-06-23T15:48:46Z2014López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.0021053-8119https://hdl.handle.net/10495/3560410.1016/j.neuroimage.2013.09.002ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithmDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASCOL001071713application/pdfengElsevierEstados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPMArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAlgoritmosAlgorithmsInteligencia ArtificialArtificial IntelligenceTeorema de BayesBayes TheoremElectroencefalografía - MétodosElectroencephalography- MétodosReproducibilidad de los ResultadosReproducibility of ResultsMEG/EEG inverse problemNeuroImage48710047684NeuroImageRoR:048jthh021115-489-25190 y 1115-545-31374PublicationORIGINALLopezDavid_2013_AlgorithmicProceduresBayesian.pdfLopezDavid_2013_AlgorithmicProceduresBayesian.pdfArtículo de investigaciónapplication/pdf1468556https://bibliotecadigital.udea.edu.co/bitstreams/9a723652-f4dc-431d-b7b5-b50d8c260b54/download98c29f7428717da19f266a938099321aMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/b88dabe1-4794-438f-9858-13c1f7b130d2/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/af8e96ad-afaa-4c5b-b308-df0279c403bd/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.txtLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.txtExtracted texttext/plain77644https://bibliotecadigital.udea.edu.co/bitstreams/de52030c-8e05-4051-9e92-5c720b10070a/downloadc62f3934c5db134b2089bf86e10bb14aMD54falseAnonymousREADTHUMBNAILLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.jpgLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.jpgGenerated Thumbnailimage/jpeg14836https://bibliotecadigital.udea.edu.co/bitstreams/bc7dd38a-b450-42b7-a7c5-f7d8863ebb4f/download2fc0edccc71a6bc74474c1957e9e0ec2MD55falseAnonymousREAD10495/35604oai:bibliotecadigital.udea.edu.co:10495/356042025-03-27 00:45:39.367http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=