Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM
ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It...
- Autores:
-
López, José David
Friston, Karl J.
Espinosa Oviedo, Jairo José
Litvak, Vladimir
Barnes, Gareth Robert
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35604
- Acceso en línea:
- https://hdl.handle.net/10495/35604
- Palabra clave:
- Algoritmos
Algorithms
Inteligencia Artificial
Artificial Intelligence
Teorema de Bayes
Bayes Theorem
Electroencefalografía - Métodos
Electroencephalography- Métodos
Reproducibilidad de los Resultados
Reproducibility of Results
MEG/EEG inverse problem
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_8b01ee9d1440046e287f75713760df63 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35604 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| title |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| spellingShingle |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM Algoritmos Algorithms Inteligencia Artificial Artificial Intelligence Teorema de Bayes Bayes Theorem Electroencefalografía - Métodos Electroencephalography- Métodos Reproducibilidad de los Resultados Reproducibility of Results MEG/EEG inverse problem |
| title_short |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| title_full |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| title_fullStr |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| title_full_unstemmed |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| title_sort |
Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM |
| dc.creator.fl_str_mv |
López, José David Friston, Karl J. Espinosa Oviedo, Jairo José Litvak, Vladimir Barnes, Gareth Robert |
| dc.contributor.author.none.fl_str_mv |
López, José David Friston, Karl J. Espinosa Oviedo, Jairo José Litvak, Vladimir Barnes, Gareth Robert |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.decs.none.fl_str_mv |
Algoritmos Algorithms Inteligencia Artificial Artificial Intelligence Teorema de Bayes Bayes Theorem Electroencefalografía - Métodos Electroencephalography- Métodos Reproducibilidad de los Resultados Reproducibility of Results |
| topic |
Algoritmos Algorithms Inteligencia Artificial Artificial Intelligence Teorema de Bayes Bayes Theorem Electroencefalografía - Métodos Electroencephalography- Métodos Reproducibilidad de los Resultados Reproducibility of Results MEG/EEG inverse problem |
| dc.subject.proposal.spa.fl_str_mv |
MEG/EEG inverse problem |
| description |
ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithm |
| publishDate |
2014 |
| dc.date.issued.none.fl_str_mv |
2014 |
| dc.date.accessioned.none.fl_str_mv |
2023-06-23T15:48:46Z |
| dc.date.available.none.fl_str_mv |
2023-06-23T15:48:46Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.002 |
| dc.identifier.issn.none.fl_str_mv |
1053-8119 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35604 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.neuroimage.2013.09.002 |
| identifier_str_mv |
López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.002 1053-8119 10.1016/j.neuroimage.2013.09.002 |
| url |
https://hdl.handle.net/10495/35604 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
NeuroImage |
| dc.relation.citationendpage.spa.fl_str_mv |
487 |
| dc.relation.citationissue.spa.fl_str_mv |
100 |
| dc.relation.citationstartpage.spa.fl_str_mv |
476 |
| dc.relation.citationvolume.spa.fl_str_mv |
84 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
NeuroImage |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
13 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/9a723652-f4dc-431d-b7b5-b50d8c260b54/download https://bibliotecadigital.udea.edu.co/bitstreams/b88dabe1-4794-438f-9858-13c1f7b130d2/download https://bibliotecadigital.udea.edu.co/bitstreams/af8e96ad-afaa-4c5b-b308-df0279c403bd/download https://bibliotecadigital.udea.edu.co/bitstreams/de52030c-8e05-4051-9e92-5c720b10070a/download https://bibliotecadigital.udea.edu.co/bitstreams/bc7dd38a-b450-42b7-a7c5-f7d8863ebb4f/download |
| bitstream.checksum.fl_str_mv |
98c29f7428717da19f266a938099321a b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 c62f3934c5db134b2089bf86e10bb14a 2fc0edccc71a6bc74474c1957e9e0ec2 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052591921758208 |
| spelling |
López, José DavidFriston, Karl J.Espinosa Oviedo, Jairo JoséLitvak, VladimirBarnes, Gareth RobertSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2023-06-23T15:48:46Z2023-06-23T15:48:46Z2014López, J. D., Litvak, V., Espinosa, J. J., Friston, K., & Barnes, G. R. (2014). Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM. NeuroImage, 84, 476–487. https://doi.org/10.1016/j.neuroimage.2013.09.0021053-8119https://hdl.handle.net/10495/3560410.1016/j.neuroimage.2013.09.002ABSTRACT: The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy—an approximation to the marginal likelihood or evidence of the solution. In this manuscript, we revisit the algorithm for MEG/EEG source reconstruction with a view to providing a didactic and practical guide. The aim is to promote and help standardise the development and consolidation of other schemes within the same framework. We describe the implementation in the Statistical Parametric Mapping (SPM) software package, carefully explaining each of its stages with the help of a simple simulated data example. We focus on the Multiple Sparse Priors (MSP) model, which we compare with the well-known Minimum Norm and LORETA models, using the negative variational Free energy for model comparison. The manuscript is accompanied by Matlab scripts to allow the reader to test and explore the underlying algorithmDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASCOL001071713application/pdfengElsevierEstados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Algorithmic procedures for Bayesian MEG/EEG source reconstruction in SPMArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAlgoritmosAlgorithmsInteligencia ArtificialArtificial IntelligenceTeorema de BayesBayes TheoremElectroencefalografía - MétodosElectroencephalography- MétodosReproducibilidad de los ResultadosReproducibility of ResultsMEG/EEG inverse problemNeuroImage48710047684NeuroImageRoR:048jthh021115-489-25190 y 1115-545-31374PublicationORIGINALLopezDavid_2013_AlgorithmicProceduresBayesian.pdfLopezDavid_2013_AlgorithmicProceduresBayesian.pdfArtículo de investigaciónapplication/pdf1468556https://bibliotecadigital.udea.edu.co/bitstreams/9a723652-f4dc-431d-b7b5-b50d8c260b54/download98c29f7428717da19f266a938099321aMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/b88dabe1-4794-438f-9858-13c1f7b130d2/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/af8e96ad-afaa-4c5b-b308-df0279c403bd/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.txtLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.txtExtracted texttext/plain77644https://bibliotecadigital.udea.edu.co/bitstreams/de52030c-8e05-4051-9e92-5c720b10070a/downloadc62f3934c5db134b2089bf86e10bb14aMD54falseAnonymousREADTHUMBNAILLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.jpgLopezDavid_2013_AlgorithmicProceduresBayesian.pdf.jpgGenerated Thumbnailimage/jpeg14836https://bibliotecadigital.udea.edu.co/bitstreams/bc7dd38a-b450-42b7-a7c5-f7d8863ebb4f/download2fc0edccc71a6bc74474c1957e9e0ec2MD55falseAnonymousREAD10495/35604oai:bibliotecadigital.udea.edu.co:10495/356042025-03-27 00:45:39.367http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
