Energía e índices topológicos VDB en grafos y digrafos

En este trabajo estudiamos aspectos esenciales en la teoría de grafos y digrafos, como lo son la energía y los índices topológicos VDB. En el primer capítulo proporcionamos bases necesarias para la comprensión de los capítulos posteriores. Revisamos resultados clásicos como el principio de Rayleigh-...

Full description

Autores:
Espinal Molina, Carlos Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46009
Acceso en línea:
https://hdl.handle.net/10495/46009
Palabra clave:
Teoría de grafos
Graph theory
Grafos dirigidos
Directed graphs
Descomposición en valores singulares
Singular value decomposition
Optimización matemática
Mathematical optimization
Árboles (Teoría de grafos)
Trees (Graph theory)
Energía de grafos
Índices topológicos VDB
Norma espectral
http://id.loc.gov/authorities/subjects/sh85056471
http://id.loc.gov/authorities/subjects/sh85038262
http://id.loc.gov/authorities/subjects/sh2015001680
http://id.loc.gov/authorities/subjects/sh85082127
http://id.loc.gov/authorities/subjects/sh85137259
http://id.loc.gov/authorities/subjects/sh85082127
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_869087d4daac1dbca62e4e025453ae36
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/46009
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Energía e índices topológicos VDB en grafos y digrafos
title Energía e índices topológicos VDB en grafos y digrafos
spellingShingle Energía e índices topológicos VDB en grafos y digrafos
Teoría de grafos
Graph theory
Grafos dirigidos
Directed graphs
Descomposición en valores singulares
Singular value decomposition
Optimización matemática
Mathematical optimization
Árboles (Teoría de grafos)
Trees (Graph theory)
Energía de grafos
Índices topológicos VDB
Norma espectral
http://id.loc.gov/authorities/subjects/sh85056471
http://id.loc.gov/authorities/subjects/sh85038262
http://id.loc.gov/authorities/subjects/sh2015001680
http://id.loc.gov/authorities/subjects/sh85082127
http://id.loc.gov/authorities/subjects/sh85137259
http://id.loc.gov/authorities/subjects/sh85082127
title_short Energía e índices topológicos VDB en grafos y digrafos
title_full Energía e índices topológicos VDB en grafos y digrafos
title_fullStr Energía e índices topológicos VDB en grafos y digrafos
title_full_unstemmed Energía e índices topológicos VDB en grafos y digrafos
title_sort Energía e índices topológicos VDB en grafos y digrafos
dc.creator.fl_str_mv Espinal Molina, Carlos Alejandro
dc.contributor.advisor.none.fl_str_mv Rada Rincón, Juan Pablo
dc.contributor.author.none.fl_str_mv Espinal Molina, Carlos Alejandro
dc.subject.lcsh.none.fl_str_mv Teoría de grafos
Graph theory
Grafos dirigidos
Directed graphs
Descomposición en valores singulares
Singular value decomposition
Optimización matemática
Mathematical optimization
Árboles (Teoría de grafos)
Trees (Graph theory)
topic Teoría de grafos
Graph theory
Grafos dirigidos
Directed graphs
Descomposición en valores singulares
Singular value decomposition
Optimización matemática
Mathematical optimization
Árboles (Teoría de grafos)
Trees (Graph theory)
Energía de grafos
Índices topológicos VDB
Norma espectral
http://id.loc.gov/authorities/subjects/sh85056471
http://id.loc.gov/authorities/subjects/sh85038262
http://id.loc.gov/authorities/subjects/sh2015001680
http://id.loc.gov/authorities/subjects/sh85082127
http://id.loc.gov/authorities/subjects/sh85137259
http://id.loc.gov/authorities/subjects/sh85082127
dc.subject.proposal.spa.fl_str_mv Energía de grafos
Índices topológicos VDB
Norma espectral
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85056471
http://id.loc.gov/authorities/subjects/sh85038262
http://id.loc.gov/authorities/subjects/sh2015001680
http://id.loc.gov/authorities/subjects/sh85082127
http://id.loc.gov/authorities/subjects/sh85137259
dc.subject.meshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85082127
description En este trabajo estudiamos aspectos esenciales en la teoría de grafos y digrafos, como lo son la energía y los índices topológicos VDB. En el primer capítulo proporcionamos bases necesarias para la comprensión de los capítulos posteriores. Revisamos resultados clásicos como el principio de Rayleigh-Ritz, la descomposición en valores singulares de una matriz y la teoría de Perron-Frobenius. Se define también la noción de grafos y digrafos, y mostramos algunos ejemplos que serán especialmente útiles. En el segundo capítulo analizamos la variación que se produce en la energía de un grafo al eliminar un vértice. Esto permite definir la energía local de un grafo en un vértice, lo cual nos da una medida de la contribución del vértice a la energía del grafo. En el tercer capítulo generalizamos estas ideas para permitir la eliminación de varios vértices en el grafo. El caso en el que se eliminan dos vértices es especialmente útil, ya que permite generalizar la noción de energía local de un vértice en digrafos. En el cuarto capítulo caracterizamos los digrafos que tienen un único valor singular diferente de cero y también aquellos digrafos que poseen todos sus valores singulares iguales. Como consecuencia, deducimos cotas superiores e inferiores para la norma espectral y la energía de digrafos. Además de ser una generalización natural, demostrar los resultados en el contexto general de digrafos nos permite deducir nuevos resultados sobre la energía de grafos. En el quinto capítulo presentamos un nuevo enfoque que fundamenta el concepto de índice topológico VDB en el espacio de matrices reales, en lugar del espacio de funciones reales de dos variables. En el sexto capítulo resolvemos el problema de valores extremos para el índice de Sombor elíptico sobre el conjunto de grafos químicos y sobre el conjunto de árboles químicos, con un número fijo de vértices. Finalmente, en el séptimo capítulo estudiamos índices función vértice-grado a través de operaciones de ramificación sobre varios conjuntos de árboles, encontrando valores extremos en cada uno de estos conjuntos.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-05-19T20:37:23Z
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/46009
url https://hdl.handle.net/10495/46009
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89-96.
O. Arizmendi, J. Fernandez-Hidalgo, O. Juarez-Romero, Energy of a vertex, Lin. Algebra Appl. 557 (2018) 464-495.
S. Banerjee, S. Singh, E. T. Al-Shammari, Community detection in social network: An experience with directed graphs. In encyclopedia of social network analysis and mining; Alhajj, R., Rokne, J., Eds.; Springer: New York, NY, USA, 2017; pp. 343-351.
S. Bermudo, R. Cruz, J. Rada, Vertex-degree-based topological indices of oriented trees, Appl. Math. Comput. 433 (2022) 127395.
S. Bermudo, R. Cruz, J. Rada, Vertex-degree function index on tournaments, Commun. Comb. Optim. 10 (2) (2025) 443-452.
A. Concas, C. Fenu, L. Reichel, G. Rodriguez, Y. Zhang, Chained structure of directed graphs with applications to social and transportation networks, Appl. Netw. Sci. 7 (2022) 64.
R. Cruz, C. Espinal, J. Rada, A matrix approach to vertex-degree-based topological indices, Mathematics 12 (2024) 2043.
R. Cruz, C. Espinal, J. Rada, A study of vertex-degree function indices via branching operations on trees, Iran. J. Math. Chem. 16 (1) (2025) 1-12.
R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, Appl. Math. Comput. 380 (2020) 125281.
R. Cruz, J. Rada, W. Sanchez, Extremal unicyclic graphs with respect to vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 88 (2022) 481-503.
K. C. Das, I. Gutman, I. Milovanovi¢, E. Milovanovi¢, B. Furtula, Degree-based energies of graphs, Linear Algebra Appl. 554 (2018) 185-204.
J. Day, W. So, Singular value inequality and graph energy change, El. J. Lin. Algebra 16 (2007) 291-299.
J. Day, W. So, Graph energy change due to edge deletion, Lin. Algebra Appl. 428 (2008) 2070-2078.
T. Došlić, I. Martinjak, R. Škrekovski, S. T. Spužević, I. Zubac, Mostar index, J. Math. Chem, 56 (2018) 2995-3013.
C. Espinal, I. Gutman, J. Rada, Elliptic Sombor index of chemical graphs, Commun. Comb. Optim. 10 (4) (2025) 989-999.
C. Espinal, J. Monsalve, J. Rada, Spectral norm and energy of a digraph with respect to a VDB topological index, Heliyon 10 (2024) e32016.
C. Espinal, J. Rada, Graph energy change due to vertex deletion, MATCH Commun. Math. Comput. Chem. 92 (2024) 89-103.
C. Espinal, J. Rada, Local energy of digraphs, submitted.
K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. USA 37 (1951) 760-766.
B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
W. Gao, Chemical trees with maximal VDB topological indices, MATCH Commun. Math. Comput. Chem. 89 (2023) 699-722.
J. García, J. Monsalve, J. Rada, Lower bounds for the spectral norm of digraphs, Linear Algebra Appl. 617 (2021) 151-167.
I. Gelfand, Normierte ringe, Rech. Math. [Mat. Sbornik] N.S. 9 (51) (1941) 3-24.
I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes, 27 (1994) 9-15.
I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.
I. Gutman, Degree based topological indices, Croat. Chem. Acta 86 (2013) 351-361.
I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices - Elliptic Sombor index, theory and application, Int. J. Quantum Chem. 124 (2) (2024) e27346.
I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.
I. Gutman, J. Monsalve, J. Rada, A relation between a vertex-degree-based topological index and its energy, Linear Algebra Appl. 636 (2022) 134-142.
I. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys.Lett. 17 (1972) 535-538.
M. Hamidi, R. Ameri, α-Derivable digraphs and its application in wireless sensor networking, Discrete Math. Algorithms Appl. 12 (2020) 2050030.
D. He, Z. Ji, C. Yang, K.C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (2023), 31.
C. Hoppen, J. Monsalve, V. Trevisan, Spectral norm of oriented graphs, Linear Algebra Appl. 574 (2019) 167-181.
R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge Univ. Press, Cambridge, 1994.
R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 2012.
M. Kalaimathi, B. J. Balamurugan, Topological indices of molecular graphs of monkeypox drugs for QSPR analysis to predict physicochemical and ADMET properties, Int. J. Quantum Chem. 123 (22) (2023) e27210.
S. Khalid, A. Ali, On the zeroth-order general Randic index, variable sum exdeg index and trees having vertices with prescribed degree, Discrete Math. Algorithms Appl. 10 (2018) 1850015.
V. R. Kulli, Graph indices. In Handbook of Research of Advanced Applications of Graph Theory in Modern Society; Pal, M.; Samanta, S.; Pal, A. (eds.); IGI Global: Hershey, USA, 2020; pp. 66-91.
V. R. Kulli, Modified elliptic Sombor index and its exponential of a graph, IJMCR, 12 (01) (2024) 3949-3954.
X. Li, I. Gutman, Mathematical aspects of Randi¢-type molecular structure descriptors, In Mathematical Chemistry Monographs; University of Kragujevac, Faculty of Science: Kragujevac, Serbia, 2006.
X. Li, Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for α ∈ (−1, 0), MATCH Commun. Math. Comput. Chem. 62 (2009) 163-170.
X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
X. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem. 121(17) (2021) e26689.
J. Liu, M. Matejić, E. Milovanović, I. Milovanović, Some new inequalities for the Forgotten topological index and coindex of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 719-738.
J. Monsalve, J. Rada, Vertex-degree-based topological indices of digraphs, Discrete Appl. Math. 295 (2021) 13-24.
J. Monsalve, J. Rada, Sharp upper and lower bounds of VDB topological indices of digraphs, Symmetry 13 (10) (2021) 1093.
J. Monsalve, J. Rada, Energy of a digraph with respect to a VDB topological index, Spec. Matrices 10 (2022) 417-426.
F. Movahedi, M. H. Akhbari, Degree-based topological indices of the molecular structure of hyaluronic acid-methotrexate conjugates in cancer treatment, Int. J. Quantum Chem. 123 (7) (2023) e27106.
J. Rada, Introducción a la energía de grafos, Editorial Universidad de Antioquia, 2022.
J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603-616.
J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput. 475 (2024) 128756.
B. R. Rakshith, K. C. Das, A note on (local) energy of a graph, Comp. Appl. Math. 43, 399 (2024).
M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 1975, 97, 6609-6615.
L. Tang, M. Lin, Q. Li, Graph energy change on edge deletion, MATCH Commun. Math. Comput. Chem. 90 (2023) 709-716.
R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, Wiley-VCH, Weinheim, 2009.
I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022) 83-88.
I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109-114.
I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285-294.
D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 82 (2010) 243-260.
Y. Yao, M. Liu, F. Belardo, C. Yang, Uni ed extremal results of topological indices and spectral invariants of graphs, Discrete Appl. Math. 271 (2019) 218-232.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 106 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Doctorado en Matemáticas
dc.publisher.department.none.fl_str_mv Instituto de Matemáticas
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/bc9f5bda-01eb-4756-bd79-9e17e624ee89/download
https://bibliotecadigital.udea.edu.co/bitstreams/fa802a8b-b2a3-48ab-97d3-5d7296a5ea42/download
https://bibliotecadigital.udea.edu.co/bitstreams/b8f1abd3-36e6-458b-8aa6-2bb92e5814e6/download
https://bibliotecadigital.udea.edu.co/bitstreams/652647d7-7d3d-4508-b5fc-51915bf79b1a/download
https://bibliotecadigital.udea.edu.co/bitstreams/629bd2ac-2dc0-4e85-93d4-8dc5f2be4a93/download
bitstream.checksum.fl_str_mv efc969814a44d71e4119690a446bda96
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
91a5d0f9d2e3b2cb6ae9270c29a745fb
727b227c36d07fa0daada0076f0ce4fb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052629390524416
spelling Rada Rincón, Juan PabloEspinal Molina, Carlos Alejandro2025-05-19T20:37:23Z2024https://hdl.handle.net/10495/46009En este trabajo estudiamos aspectos esenciales en la teoría de grafos y digrafos, como lo son la energía y los índices topológicos VDB. En el primer capítulo proporcionamos bases necesarias para la comprensión de los capítulos posteriores. Revisamos resultados clásicos como el principio de Rayleigh-Ritz, la descomposición en valores singulares de una matriz y la teoría de Perron-Frobenius. Se define también la noción de grafos y digrafos, y mostramos algunos ejemplos que serán especialmente útiles. En el segundo capítulo analizamos la variación que se produce en la energía de un grafo al eliminar un vértice. Esto permite definir la energía local de un grafo en un vértice, lo cual nos da una medida de la contribución del vértice a la energía del grafo. En el tercer capítulo generalizamos estas ideas para permitir la eliminación de varios vértices en el grafo. El caso en el que se eliminan dos vértices es especialmente útil, ya que permite generalizar la noción de energía local de un vértice en digrafos. En el cuarto capítulo caracterizamos los digrafos que tienen un único valor singular diferente de cero y también aquellos digrafos que poseen todos sus valores singulares iguales. Como consecuencia, deducimos cotas superiores e inferiores para la norma espectral y la energía de digrafos. Además de ser una generalización natural, demostrar los resultados en el contexto general de digrafos nos permite deducir nuevos resultados sobre la energía de grafos. En el quinto capítulo presentamos un nuevo enfoque que fundamenta el concepto de índice topológico VDB en el espacio de matrices reales, en lugar del espacio de funciones reales de dos variables. En el sexto capítulo resolvemos el problema de valores extremos para el índice de Sombor elíptico sobre el conjunto de grafos químicos y sobre el conjunto de árboles químicos, con un número fijo de vértices. Finalmente, en el séptimo capítulo estudiamos índices función vértice-grado a través de operaciones de ramificación sobre varios conjuntos de árboles, encontrando valores extremos en cada uno de estos conjuntos.In this work, we study essential aspects of graph and digraph theory, such as energy and VDB topological indices. In the first chapter, we provide the necessary foundations for understanding the subsequent chapters. We review classical results such as the Rayleigh-Ritz principle, the singular value decomposition of a matrix, and Perron-Frobenius theory. We also define the concepts of graphs and digraphs, presenting examples that will be particularly useful. In the second chapter, we analyze how the energy of a graph changes when a vertex is removed. This leads to the definition of the local energy of a graph at a vertex, providing a measure of the vertex's contribution to the overall energy of the graph. In the third chapter, we generalize these ideas to allow the removal of multiple vertices. The case of removing two vertices is particularly useful, as it enables the generalization of the concept of local energy of a vertex to digraphs. In the fourth chapter, we characterize digraphs with a single nonzero singular value, as well as those whose singular values are all equal. We then derive upper and lower bounds for the spectral norm and energy of digraphs. Besides being a natural generalization, proving these results in the context of digraphs allows us to derive new insights into the energy of graphs. In the fifth chapter, we introduce a new approach that grounds the concept of VDB topological index in the space of real matrices, rather than in the space of real functions of two variables. In the sixth chapter, we solve the extremal value problem for the elliptic Sombor index over the set of chemical graphs and over the set of chemical trees, with equal number of vertices. Finally, in th seventh chapter, we study vertex-degree function indices through branching operations over various sets of trees, identifying extremal values within each of these sets.DoctoradoDoctor en Matemáticas106 páginasapplication/pdfspaUniversidad de AntioquiaDoctorado en MatemáticasInstituto de MatemáticasMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Teoría de grafosGraph theoryGrafos dirigidosDirected graphsDescomposición en valores singularesSingular value decompositionOptimización matemáticaMathematical optimizationÁrboles (Teoría de grafos)Trees (Graph theory)Energía de grafosÍndices topológicos VDBNorma espectralhttp://id.loc.gov/authorities/subjects/sh85056471http://id.loc.gov/authorities/subjects/sh85038262http://id.loc.gov/authorities/subjects/sh2015001680http://id.loc.gov/authorities/subjects/sh85082127http://id.loc.gov/authorities/subjects/sh85137259http://id.loc.gov/authorities/subjects/sh85082127Energía e índices topológicos VDB en grafos y digrafosTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06http://purl.org/redcol/resource_type/TDTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftA. Ali, I. Gutman, H. Saber, A. M. Alanazi, On bond incident degree indices of (n, m)-graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 89-96.O. Arizmendi, J. Fernandez-Hidalgo, O. Juarez-Romero, Energy of a vertex, Lin. Algebra Appl. 557 (2018) 464-495.S. Banerjee, S. Singh, E. T. Al-Shammari, Community detection in social network: An experience with directed graphs. In encyclopedia of social network analysis and mining; Alhajj, R., Rokne, J., Eds.; Springer: New York, NY, USA, 2017; pp. 343-351.S. Bermudo, R. Cruz, J. Rada, Vertex-degree-based topological indices of oriented trees, Appl. Math. Comput. 433 (2022) 127395.S. Bermudo, R. Cruz, J. Rada, Vertex-degree function index on tournaments, Commun. Comb. Optim. 10 (2) (2025) 443-452.A. Concas, C. Fenu, L. Reichel, G. Rodriguez, Y. Zhang, Chained structure of directed graphs with applications to social and transportation networks, Appl. Netw. Sci. 7 (2022) 64.R. Cruz, C. Espinal, J. Rada, A matrix approach to vertex-degree-based topological indices, Mathematics 12 (2024) 2043.R. Cruz, C. Espinal, J. Rada, A study of vertex-degree function indices via branching operations on trees, Iran. J. Math. Chem. 16 (1) (2025) 1-12.R. Cruz, J. Monsalve, J. Rada, Extremal values of vertex-degree-based topological indices of chemical trees, Appl. Math. Comput. 380 (2020) 125281.R. Cruz, J. Rada, W. Sanchez, Extremal unicyclic graphs with respect to vertex-degree-based topological indices, MATCH Commun. Math. Comput. Chem. 88 (2022) 481-503.K. C. Das, I. Gutman, I. Milovanovi¢, E. Milovanovi¢, B. Furtula, Degree-based energies of graphs, Linear Algebra Appl. 554 (2018) 185-204.J. Day, W. So, Singular value inequality and graph energy change, El. J. Lin. Algebra 16 (2007) 291-299.J. Day, W. So, Graph energy change due to edge deletion, Lin. Algebra Appl. 428 (2008) 2070-2078.T. Došlić, I. Martinjak, R. Škrekovski, S. T. Spužević, I. Zubac, Mostar index, J. Math. Chem, 56 (2018) 2995-3013.C. Espinal, I. Gutman, J. Rada, Elliptic Sombor index of chemical graphs, Commun. Comb. Optim. 10 (4) (2025) 989-999.C. Espinal, J. Monsalve, J. Rada, Spectral norm and energy of a digraph with respect to a VDB topological index, Heliyon 10 (2024) e32016.C. Espinal, J. Rada, Graph energy change due to vertex deletion, MATCH Commun. Math. Comput. Chem. 92 (2024) 89-103.C. Espinal, J. Rada, Local energy of digraphs, submitted.K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. USA 37 (1951) 760-766.B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.W. Gao, Chemical trees with maximal VDB topological indices, MATCH Commun. Math. Comput. Chem. 89 (2023) 699-722.J. García, J. Monsalve, J. Rada, Lower bounds for the spectral norm of digraphs, Linear Algebra Appl. 617 (2021) 151-167.I. Gelfand, Normierte ringe, Rech. Math. [Mat. Sbornik] N.S. 9 (51) (1941) 3-24.I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes, 27 (1994) 9-15.I. Gutman, Acyclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45 (1977) 79-87.I. Gutman, Degree based topological indices, Croat. Chem. Acta 86 (2013) 351-361.I. Gutman, B. Furtula, M. S. Oz, Geometric approach to vertex-degree-based topological indices - Elliptic Sombor index, theory and application, Int. J. Quantum Chem. 124 (2) (2024) e27346.I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11-16.I. Gutman, J. Monsalve, J. Rada, A relation between a vertex-degree-based topological index and its energy, Linear Algebra Appl. 636 (2022) 134-142.I. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys.Lett. 17 (1972) 535-538.M. Hamidi, R. Ameri, α-Derivable digraphs and its application in wireless sensor networking, Discrete Math. Algorithms Appl. 12 (2020) 2050030.D. He, Z. Ji, C. Yang, K.C. Das, Extremal graphs to vertex degree function index for convex functions, Axioms 12 (2023), 31.C. Hoppen, J. Monsalve, V. Trevisan, Spectral norm of oriented graphs, Linear Algebra Appl. 574 (2019) 167-181.R. A. Horn, C. R. Johnson, Topics in matrix analysis, Cambridge Univ. Press, Cambridge, 1994.R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 2012.M. Kalaimathi, B. J. Balamurugan, Topological indices of molecular graphs of monkeypox drugs for QSPR analysis to predict physicochemical and ADMET properties, Int. J. Quantum Chem. 123 (22) (2023) e27210.S. Khalid, A. Ali, On the zeroth-order general Randic index, variable sum exdeg index and trees having vertices with prescribed degree, Discrete Math. Algorithms Appl. 10 (2018) 1850015.V. R. Kulli, Graph indices. In Handbook of Research of Advanced Applications of Graph Theory in Modern Society; Pal, M.; Samanta, S.; Pal, A. (eds.); IGI Global: Hershey, USA, 2020; pp. 66-91.V. R. Kulli, Modified elliptic Sombor index and its exponential of a graph, IJMCR, 12 (01) (2024) 3949-3954.X. Li, I. Gutman, Mathematical aspects of Randi¢-type molecular structure descriptors, In Mathematical Chemistry Monographs; University of Kragujevac, Faculty of Science: Kragujevac, Serbia, 2006.X. Li, Y. Shi, (n, m)-graphs with maximum zeroth-order general Randić index for α ∈ (−1, 0), MATCH Commun. Math. Comput. Chem. 62 (2009) 163-170.X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.X. Li, H. Zhao, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.H. Liu, H. Chen, Q. Xiao, X. Fang, Z. Tang, More on Sombor indices of chemical graphs and their applications to the boiling point of benzenoid hydrocarbons, Int. J. Quantum Chem. 121(17) (2021) e26689.J. Liu, M. Matejić, E. Milovanović, I. Milovanović, Some new inequalities for the Forgotten topological index and coindex of graphs, MATCH Commun. Math. Comput. Chem. 84 (2020) 719-738.J. Monsalve, J. Rada, Vertex-degree-based topological indices of digraphs, Discrete Appl. Math. 295 (2021) 13-24.J. Monsalve, J. Rada, Sharp upper and lower bounds of VDB topological indices of digraphs, Symmetry 13 (10) (2021) 1093.J. Monsalve, J. Rada, Energy of a digraph with respect to a VDB topological index, Spec. Matrices 10 (2022) 417-426.F. Movahedi, M. H. Akhbari, Degree-based topological indices of the molecular structure of hyaluronic acid-methotrexate conjugates in cancer treatment, Int. J. Quantum Chem. 123 (7) (2023) e27106.J. Rada, Introducción a la energía de grafos, Editorial Universidad de Antioquia, 2022.J. Rada, R. Cruz, Vertex-degree-based topological indices over graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 603-616.J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput. 475 (2024) 128756.B. R. Rakshith, K. C. Das, A note on (local) energy of a graph, Comp. Appl. Math. 43, 399 (2024).M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 1975, 97, 6609-6615.L. Tang, M. Lin, Q. Li, Graph energy change on edge deletion, MATCH Commun. Math. Comput. Chem. 90 (2023) 709-716.R. Todeschini, V. Consonni, Molecular descriptors for chemoinformatics, Wiley-VCH, Weinheim, 2009.I. Tomescu, Extremal vertex-degree function index for trees and unicyclic graphs with given independence number, Discrete Appl. Math. 306 (2022) 83-88.I. Tomescu, Graphs with given cyclomatic number extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 87 (2022) 109-114.I. Tomescu, Properties of connected (n, m)-graphs extremal relatively to vertex degree function index for convex functions, MATCH Commun. Math. Comput. Chem. 85 (2021) 285-294.D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 82 (2010) 243-260.Y. Yao, M. Liu, F. Belardo, C. Yang, Uni ed extremal results of topological indices and spectral invariants of graphs, Discrete Appl. Math. 271 (2019) 218-232.PublicationORIGINALEspinalAlejandro_2024_EnergiaIndicesTopologicos.pdfEspinalAlejandro_2024_EnergiaIndicesTopologicos.pdfapplication/pdf1252821https://bibliotecadigital.udea.edu.co/bitstreams/bc9f5bda-01eb-4756-bd79-9e17e624ee89/downloadefc969814a44d71e4119690a446bda96MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/fa802a8b-b2a3-48ab-97d3-5d7296a5ea42/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/b8f1abd3-36e6-458b-8aa6-2bb92e5814e6/download5643bfd9bcf29d560eeec56d584edaa9MD53falseAnonymousREADTEXTEspinalAlejandro_2024_EnergiaIndicesTopologicos.pdf.txtEspinalAlejandro_2024_EnergiaIndicesTopologicos.pdf.txtExtracted texttext/plain106237https://bibliotecadigital.udea.edu.co/bitstreams/652647d7-7d3d-4508-b5fc-51915bf79b1a/download91a5d0f9d2e3b2cb6ae9270c29a745fbMD54falseAnonymousREADTHUMBNAILEspinalAlejandro_2024_EnergiaIndicesTopologicos.pdf.jpgEspinalAlejandro_2024_EnergiaIndicesTopologicos.pdf.jpgGenerated Thumbnailimage/jpeg8153https://bibliotecadigital.udea.edu.co/bitstreams/629bd2ac-2dc0-4e85-93d4-8dc5f2be4a93/download727b227c36d07fa0daada0076f0ce4fbMD55falseAnonymousREAD10495/46009oai:bibliotecadigital.udea.edu.co:10495/460092025-05-20 04:10:16.51http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=