Development of new inorganic p-type materials for perovskite solar cells
ABSTRACT: Photovoltaic (PV) energy is one the most promising alternatives to replace fossil fuels as main electricity source and decrease greenhouse effect caused by related CO2 emissions. Perovskite solar cells (PSC) is a third generation PV technology which has revolutionized this field because of...
- Autores:
-
Tirado Jaramillo, Juan Felipe
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/14478
- Acceso en línea:
- http://hdl.handle.net/10495/14478
- Palabra clave:
- Perovskite solar cells
Solar cells
Célula fotovoltaíca
Fuels
Combustible
Electricity
Electricidad
Semiconductors
Semiconductor
Stability
Estabilidad
Inorganic hole transporting materials
Low-cost
Solution process
http://aims.fao.org/aos/agrovoc/c_36930
http://id.loc.gov/authorities/subjects/sh2019000655
http://vocabularies.unesco.org/thesaurus/concept4820
http://vocabularies.unesco.org/thesaurus/concept638
http://vocabularies.unesco.org/thesaurus/concept124
http://vocabularies.unesco.org/thesaurus/concept9546
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_83ef9b93bf0d0b426ccc88416caeaca1 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/14478 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Development of new inorganic p-type materials for perovskite solar cells |
| title |
Development of new inorganic p-type materials for perovskite solar cells |
| spellingShingle |
Development of new inorganic p-type materials for perovskite solar cells Perovskite solar cells Solar cells Célula fotovoltaíca Fuels Combustible Electricity Electricidad Semiconductors Semiconductor Stability Estabilidad Inorganic hole transporting materials Low-cost Solution process http://aims.fao.org/aos/agrovoc/c_36930 http://id.loc.gov/authorities/subjects/sh2019000655 http://vocabularies.unesco.org/thesaurus/concept4820 http://vocabularies.unesco.org/thesaurus/concept638 http://vocabularies.unesco.org/thesaurus/concept124 http://vocabularies.unesco.org/thesaurus/concept9546 |
| title_short |
Development of new inorganic p-type materials for perovskite solar cells |
| title_full |
Development of new inorganic p-type materials for perovskite solar cells |
| title_fullStr |
Development of new inorganic p-type materials for perovskite solar cells |
| title_full_unstemmed |
Development of new inorganic p-type materials for perovskite solar cells |
| title_sort |
Development of new inorganic p-type materials for perovskite solar cells |
| dc.creator.fl_str_mv |
Tirado Jaramillo, Juan Felipe |
| dc.contributor.advisor.none.fl_str_mv |
Jaramillo Isaza, Franklin |
| dc.contributor.author.none.fl_str_mv |
Tirado Jaramillo, Juan Felipe |
| dc.subject.lcsh.none.fl_str_mv |
Perovskite solar cells |
| topic |
Perovskite solar cells Solar cells Célula fotovoltaíca Fuels Combustible Electricity Electricidad Semiconductors Semiconductor Stability Estabilidad Inorganic hole transporting materials Low-cost Solution process http://aims.fao.org/aos/agrovoc/c_36930 http://id.loc.gov/authorities/subjects/sh2019000655 http://vocabularies.unesco.org/thesaurus/concept4820 http://vocabularies.unesco.org/thesaurus/concept638 http://vocabularies.unesco.org/thesaurus/concept124 http://vocabularies.unesco.org/thesaurus/concept9546 |
| dc.subject.unesco.none.fl_str_mv |
Solar cells Célula fotovoltaíca Fuels Combustible Electricity Electricidad Semiconductors Semiconductor |
| dc.subject.agrovoc.none.fl_str_mv |
Stability Estabilidad |
| dc.subject.proposal.spa.fl_str_mv |
Inorganic hole transporting materials Low-cost Solution process |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_36930 |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh2019000655 |
| dc.subject.unescouri.none.fl_str_mv |
http://vocabularies.unesco.org/thesaurus/concept4820 http://vocabularies.unesco.org/thesaurus/concept638 http://vocabularies.unesco.org/thesaurus/concept124 http://vocabularies.unesco.org/thesaurus/concept9546 |
| description |
ABSTRACT: Photovoltaic (PV) energy is one the most promising alternatives to replace fossil fuels as main electricity source and decrease greenhouse effect caused by related CO2 emissions. Perovskite solar cells (PSC) is a third generation PV technology which has revolutionized this field because of its extremely fast increase in power conversion efficiency (PCE). Remarkably, PSC PCE has achieved values >24% being comparable with polycrystalline silicon and thin film PV (CdTe, CIGS) so that it has become in a real alternative to traditional silicon PV. In order to reach a commercialization quality level, PSC need to improve its long-term stability, PCE of large devices and cost-effectiveness. It has been widely recognized that charge selective layers are crucial components of PSC structure for managing of photogenerated charges. Specifically, hole-transporting materials (HTM) have a strong influence on device performance, stability and cost. However, they represent one of the major bottleneck for PSC commercialization owing to unstable and expensive organic molecules materials often employed. In this framework, inorganic p-type semiconductors are a promising option to overcome issues related to organic HTM because of their intrinsic good properties as hole selective contacts and ambient stability. Nevertheless, relative few inorganic materials have been explored for this function so that they have not reached organic counterparts’ performance. Thus, it is mandatory to explore and optimize new inorganic alternatives for HTM in PSC. Accordingly, in this thesis two inorganic p-type semiconductors, namely, copper sulfide and nickel oxide, have been applied in two different PSC architectures by three distinct approaches. First, copper sulfide thin films (CuxS) were fabricated by spray pyrolysis technique and applied as semi-transparent electrode in planar p-i-n PSC. Morphological and optoelectronic properties of CuxS were correlated with device performance. In the second approach, copper sulfide was synthesized in the form of nanoparticles (CuS NPs) and colloidal dispersions in non-polar solvents were obtained. Subsequently, the CuS NPs were applied by spin-coating technique in a mesoscopic n-i-p architecture, acting as sole HTM and exhibiting efficiencies over 13%. Third, hydrophobic nickel oxide (ho-NiOx) nanocrystals were synthesized and corresponding colloidal dispersions were obtained. Then, n-i-p planar PSC were fabricated employing ho-NiOx as sole HTM which was deposited by solution-process spin-coating. Remarkably, PCE as high as 12.7% and impressive high-humidity air stability was observed. Namely, PCE retention over 90% was exhibited by ho-NiOx-based PSC for more than 1000 h. The optoelectronic properties, energy band alignment and interface phenomena are studied and discussed in detailed for all the obtained semiconductors and devices. |
| publishDate |
2019 |
| dc.date.issued.none.fl_str_mv |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2020-05-20T17:17:33Z |
| dc.date.available.none.fl_str_mv |
2020-05-20T17:17:33Z |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/14478 |
| url |
http://hdl.handle.net/10495/14478 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
112 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería de Materiales |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/382b400c-9344-4e1a-92a0-e3dec6bf151f/download https://bibliotecadigital.udea.edu.co/bitstreams/9b11c35e-2422-4768-a78c-0ae864b086cd/download https://bibliotecadigital.udea.edu.co/bitstreams/b96e3abd-29e6-4d57-b4ea-77d00c25d95d/download https://bibliotecadigital.udea.edu.co/bitstreams/9570e9e5-1786-40ec-9d66-3fa95b1afe2f/download https://bibliotecadigital.udea.edu.co/bitstreams/6e166e74-f6be-4de2-9783-1ef50fd37f9c/download |
| bitstream.checksum.fl_str_mv |
1bd1715406e18d547b210e0ebc34ea6f b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 0c9f301a2a7cb9cd52daf26239472015 e1014a17da25b13da114622e0127cab8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052294480592896 |
| spelling |
Jaramillo Isaza, FranklinTirado Jaramillo, Juan Felipe2020-05-20T17:17:33Z2020-05-20T17:17:33Z2019http://hdl.handle.net/10495/14478ABSTRACT: Photovoltaic (PV) energy is one the most promising alternatives to replace fossil fuels as main electricity source and decrease greenhouse effect caused by related CO2 emissions. Perovskite solar cells (PSC) is a third generation PV technology which has revolutionized this field because of its extremely fast increase in power conversion efficiency (PCE). Remarkably, PSC PCE has achieved values >24% being comparable with polycrystalline silicon and thin film PV (CdTe, CIGS) so that it has become in a real alternative to traditional silicon PV. In order to reach a commercialization quality level, PSC need to improve its long-term stability, PCE of large devices and cost-effectiveness. It has been widely recognized that charge selective layers are crucial components of PSC structure for managing of photogenerated charges. Specifically, hole-transporting materials (HTM) have a strong influence on device performance, stability and cost. However, they represent one of the major bottleneck for PSC commercialization owing to unstable and expensive organic molecules materials often employed. In this framework, inorganic p-type semiconductors are a promising option to overcome issues related to organic HTM because of their intrinsic good properties as hole selective contacts and ambient stability. Nevertheless, relative few inorganic materials have been explored for this function so that they have not reached organic counterparts’ performance. Thus, it is mandatory to explore and optimize new inorganic alternatives for HTM in PSC. Accordingly, in this thesis two inorganic p-type semiconductors, namely, copper sulfide and nickel oxide, have been applied in two different PSC architectures by three distinct approaches. First, copper sulfide thin films (CuxS) were fabricated by spray pyrolysis technique and applied as semi-transparent electrode in planar p-i-n PSC. Morphological and optoelectronic properties of CuxS were correlated with device performance. In the second approach, copper sulfide was synthesized in the form of nanoparticles (CuS NPs) and colloidal dispersions in non-polar solvents were obtained. Subsequently, the CuS NPs were applied by spin-coating technique in a mesoscopic n-i-p architecture, acting as sole HTM and exhibiting efficiencies over 13%. Third, hydrophobic nickel oxide (ho-NiOx) nanocrystals were synthesized and corresponding colloidal dispersions were obtained. Then, n-i-p planar PSC were fabricated employing ho-NiOx as sole HTM which was deposited by solution-process spin-coating. Remarkably, PCE as high as 12.7% and impressive high-humidity air stability was observed. Namely, PCE retention over 90% was exhibited by ho-NiOx-based PSC for more than 1000 h. The optoelectronic properties, energy band alignment and interface phenomena are studied and discussed in detailed for all the obtained semiconductors and devices.DoctoradoDoctor en Ingeniería de Materiales112application/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería de Materialeshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Perovskite solar cellsSolar cellsCélula fotovoltaícaFuelsCombustibleElectricityElectricidadSemiconductorsSemiconductorStabilityEstabilidadInorganic hole transporting materialsLow-costSolution processhttp://aims.fao.org/aos/agrovoc/c_36930http://id.loc.gov/authorities/subjects/sh2019000655http://vocabularies.unesco.org/thesaurus/concept4820http://vocabularies.unesco.org/thesaurus/concept638http://vocabularies.unesco.org/thesaurus/concept124http://vocabularies.unesco.org/thesaurus/concept9546Development of new inorganic p-type materials for perovskite solar cellsTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftPublicationORIGINALTiradoJuan_2019_DevelopedInorganicMaterials.pdfTiradoJuan_2019_DevelopedInorganicMaterials.pdfTesis doctoralapplication/pdf4496520https://bibliotecadigital.udea.edu.co/bitstreams/382b400c-9344-4e1a-92a0-e3dec6bf151f/download1bd1715406e18d547b210e0ebc34ea6fMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/9b11c35e-2422-4768-a78c-0ae864b086cd/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b96e3abd-29e6-4d57-b4ea-77d00c25d95d/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTTiradoJuan_2019_DevelopedInorganicMaterials.pdf.txtTiradoJuan_2019_DevelopedInorganicMaterials.pdf.txtExtracted texttext/plain101646https://bibliotecadigital.udea.edu.co/bitstreams/9570e9e5-1786-40ec-9d66-3fa95b1afe2f/download0c9f301a2a7cb9cd52daf26239472015MD54falseAnonymousREADTHUMBNAILTiradoJuan_2019_DevelopedInorganicMaterials.pdf.jpgTiradoJuan_2019_DevelopedInorganicMaterials.pdf.jpgGenerated Thumbnailimage/jpeg11960https://bibliotecadigital.udea.edu.co/bitstreams/6e166e74-f6be-4de2-9783-1ef50fd37f9c/downloade1014a17da25b13da114622e0127cab8MD55falseAnonymousREAD10495/14478oai:bibliotecadigital.udea.edu.co:10495/144782025-03-26 20:03:40.4http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
