Functional calibration estimation by the maximum entropy on the mean principle

ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator...

Full description

Autores:
Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Gamboa, Fabrice
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39626
Acceso en línea:
https://hdl.handle.net/10495/39626
Palabra clave:
Entropía
Entropy
Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_82309261e4d0bef1925fedf9ab433aec
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/39626
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Functional calibration estimation by the maximum entropy on the mean principle
title Functional calibration estimation by the maximum entropy on the mean principle
spellingShingle Functional calibration estimation by the maximum entropy on the mean principle
Entropía
Entropy
Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
title_short Functional calibration estimation by the maximum entropy on the mean principle
title_full Functional calibration estimation by the maximum entropy on the mean principle
title_fullStr Functional calibration estimation by the maximum entropy on the mean principle
title_full_unstemmed Functional calibration estimation by the maximum entropy on the mean principle
title_sort Functional calibration estimation by the maximum entropy on the mean principle
dc.creator.fl_str_mv Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Gamboa, Fabrice
dc.contributor.author.none.fl_str_mv Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Gamboa, Fabrice
dc.contributor.researchgroup.spa.fl_str_mv Microeconomía Aplicada
dc.subject.lemb.none.fl_str_mv Entropía
Entropy
topic Entropía
Entropy
Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
dc.subject.proposal.spa.fl_str_mv Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
description ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator are obtained by matching the calibration estimation problem with the maximum entropy on the mean principle. In particular, the calibration estimation is viewed as an infinite dimensional linear inverse problem following the structure of the maximum entropy on the mean approach. We give a precise theoretical setting and estimate the functional calibration weights assuming, as prior measures, the centered Gaussian and compound Poisson random measures. Additionally, through a simple simulation study, we show that our functional calibration estimator improves its accuracy compared with the Horvitz-Thompson estimator.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2024-06-04T03:03:21Z
dc.date.available.none.fl_str_mv 2024-06-04T03:03:21Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Gallón, Santiago & Loubes, Jean-Michel & Gamboa, Fabrice. (2013). Functional calibration estimation by the maximum entropy on the mean principle. Statistics. 49. 10.1080/02331888.2014.932795.
dc.identifier.issn.none.fl_str_mv 0233-1888
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/39626
dc.identifier.doi.none.fl_str_mv 10.1080/02331888.2014.932795
dc.identifier.eissn.none.fl_str_mv 1029-4910
identifier_str_mv Gallón, Santiago & Loubes, Jean-Michel & Gamboa, Fabrice. (2013). Functional calibration estimation by the maximum entropy on the mean principle. Statistics. 49. 10.1080/02331888.2014.932795.
0233-1888
10.1080/02331888.2014.932795
1029-4910
url https://hdl.handle.net/10495/39626
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Statistics
dc.relation.citationendpage.spa.fl_str_mv 1004
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 989
dc.relation.citationvolume.spa.fl_str_mv 49
dc.relation.ispartofjournal.spa.fl_str_mv Statistics
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Group
dc.publisher.place.spa.fl_str_mv Hampshire, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/7bab1aba-b938-4f6a-87a5-93d4b53b1f7c/download
https://bibliotecadigital.udea.edu.co/bitstreams/bf79b9cc-6792-49cc-90b9-f5424097c123/download
https://bibliotecadigital.udea.edu.co/bitstreams/ad3642f9-0535-4c7f-a755-694f502030d0/download
https://bibliotecadigital.udea.edu.co/bitstreams/cc7d315c-bb29-43f7-95a3-4d864e8247f1/download
https://bibliotecadigital.udea.edu.co/bitstreams/8c4addfd-6446-48f1-854f-7849c5df6469/download
bitstream.checksum.fl_str_mv 6f441b8652f835125b45c7a9552062a7
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
654b31ca263f10f50ad4f927445cba68
5f76e512fd5909e7fa046c1862b42aac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052596128645120
spelling Gallón Gómez, Santiago AlejandroLoubes, Jean MichelGamboa, FabriceMicroeconomía Aplicada2024-06-04T03:03:21Z2024-06-04T03:03:21Z2015Gallón, Santiago & Loubes, Jean-Michel & Gamboa, Fabrice. (2013). Functional calibration estimation by the maximum entropy on the mean principle. Statistics. 49. 10.1080/02331888.2014.932795.0233-1888https://hdl.handle.net/10495/3962610.1080/02331888.2014.9327951029-4910ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator are obtained by matching the calibration estimation problem with the maximum entropy on the mean principle. In particular, the calibration estimation is viewed as an infinite dimensional linear inverse problem following the structure of the maximum entropy on the mean approach. We give a precise theoretical setting and estimate the functional calibration weights assuming, as prior measures, the centered Gaussian and compound Poisson random measures. Additionally, through a simple simulation study, we show that our functional calibration estimator improves its accuracy compared with the Horvitz-Thompson estimator.COL001380820 páginasapplication/pdfengTaylor and Francis GroupHampshire, Inglaterrahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Functional calibration estimation by the maximum entropy on the mean principleArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionEntropíaEntropyAuxiliary informationFunctional calibration weightsFunctional dataInfinite dimensional linear inverse problemsSurvey samplingStatistics1004598949StatisticsPublicationORIGINALGallonSantiago_2015_Functional_Calibration_Estimation.pdfGallonSantiago_2015_Functional_Calibration_Estimation.pdfArtículo de investigaciónapplication/pdf1841364https://bibliotecadigital.udea.edu.co/bitstreams/7bab1aba-b938-4f6a-87a5-93d4b53b1f7c/download6f441b8652f835125b45c7a9552062a7MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/bf79b9cc-6792-49cc-90b9-f5424097c123/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ad3642f9-0535-4c7f-a755-694f502030d0/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGallonSantiago_2015_Functional_Calibration_Estimation.pdf.txtGallonSantiago_2015_Functional_Calibration_Estimation.pdf.txtExtracted texttext/plain41994https://bibliotecadigital.udea.edu.co/bitstreams/cc7d315c-bb29-43f7-95a3-4d864e8247f1/download654b31ca263f10f50ad4f927445cba68MD54falseAnonymousREADTHUMBNAILGallonSantiago_2015_Functional_Calibration_Estimation.pdf.jpgGallonSantiago_2015_Functional_Calibration_Estimation.pdf.jpgGenerated Thumbnailimage/jpeg9946https://bibliotecadigital.udea.edu.co/bitstreams/8c4addfd-6446-48f1-854f-7849c5df6469/download5f76e512fd5909e7fa046c1862b42aacMD55falseAnonymousREAD10495/39626oai:bibliotecadigital.udea.edu.co:10495/396262025-03-27 00:48:43.797http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=