Functional calibration estimation by the maximum entropy on the mean principle

ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator...

Full description

Autores:
Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Gamboa, Fabrice
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/39626
Acceso en línea:
https://hdl.handle.net/10495/39626
Palabra clave:
Entropía
Entropy
Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Description
Summary:ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator are obtained by matching the calibration estimation problem with the maximum entropy on the mean principle. In particular, the calibration estimation is viewed as an infinite dimensional linear inverse problem following the structure of the maximum entropy on the mean approach. We give a precise theoretical setting and estimate the functional calibration weights assuming, as prior measures, the centered Gaussian and compound Poisson random measures. Additionally, through a simple simulation study, we show that our functional calibration estimator improves its accuracy compared with the Horvitz-Thompson estimator.