Functional calibration estimation by the maximum entropy on the mean principle
ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator...
- Autores:
-
Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Gamboa, Fabrice
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39626
- Acceso en línea:
- https://hdl.handle.net/10495/39626
- Palabra clave:
- Entropía
Entropy
Auxiliary information
Functional calibration weights
Functional data
Infinite dimensional linear inverse problems
Survey sampling
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| Summary: | ABSTRACT: We extend the problem of obtaining an estimator for the finite population mean parameter incorporating complete auxiliary information through calibration estimation in survey sampling but considering a functional data framework. The functional calibration sampling weights of the estimator are obtained by matching the calibration estimation problem with the maximum entropy on the mean principle. In particular, the calibration estimation is viewed as an infinite dimensional linear inverse problem following the structure of the maximum entropy on the mean approach. We give a precise theoretical setting and estimate the functional calibration weights assuming, as prior measures, the centered Gaussian and compound Poisson random measures. Additionally, through a simple simulation study, we show that our functional calibration estimator improves its accuracy compared with the Horvitz-Thompson estimator. |
|---|
