Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict

ABSTRACT : Colombia has had the most prolonged armed conflict, with the highest number of victims in Latin America. Since the beginning of the century, multiple efforts have been made to de-escalate it, such as the peace agreements with the paramilitaries in 2002 and the FARC guerrillas in 2016. How...

Full description

Autores:
Quiza Montealegre, Jhon Jair
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/41900
Acceso en línea:
https://hdl.handle.net/10495/41900
Palabra clave:
Fenómenos Electrofisiológicos
Electrophysiological Phenomena
Conflicto armado
Prejuicios y antipatías
Prejudices and antipathies
Reconciliación
Reconciliation
Pruebas psicológicas
Psychological tests
Aprendizaje automático (inteligencia artificial)
Machine learning
https://id.nlm.nih.gov/mesh/D055724
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_80c433dc631d4160cb218d9db459b97c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/41900
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
title Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
spellingShingle Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
Fenómenos Electrofisiológicos
Electrophysiological Phenomena
Conflicto armado
Prejuicios y antipatías
Prejudices and antipathies
Reconciliación
Reconciliation
Pruebas psicológicas
Psychological tests
Aprendizaje automático (inteligencia artificial)
Machine learning
https://id.nlm.nih.gov/mesh/D055724
title_short Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
title_full Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
title_fullStr Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
title_full_unstemmed Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
title_sort Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed Conflict
dc.creator.fl_str_mv Quiza Montealegre, Jhon Jair
dc.contributor.advisor.none.fl_str_mv López, José David
Quintero Zea, Andrés
dc.contributor.author.none.fl_str_mv Quiza Montealegre, Jhon Jair
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.decs.none.fl_str_mv Fenómenos Electrofisiológicos
Electrophysiological Phenomena
topic Fenómenos Electrofisiológicos
Electrophysiological Phenomena
Conflicto armado
Prejuicios y antipatías
Prejudices and antipathies
Reconciliación
Reconciliation
Pruebas psicológicas
Psychological tests
Aprendizaje automático (inteligencia artificial)
Machine learning
https://id.nlm.nih.gov/mesh/D055724
dc.subject.lemb.none.fl_str_mv Conflicto armado
Prejuicios y antipatías
Prejudices and antipathies
Reconciliación
Reconciliation
Pruebas psicológicas
Psychological tests
Aprendizaje automático (inteligencia artificial)
Machine learning
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D055724
description ABSTRACT : Colombia has had the most prolonged armed conflict, with the highest number of victims in Latin America. Since the beginning of the century, multiple efforts have been made to de-escalate it, such as the peace agreements with the paramilitaries in 2002 and the FARC guerrillas in 2016. However, efforts to de-escalate the conflict have had mixed results due to persistent prejudices among former actors. Therefore, it is necessary to characterize this prejudice to design more effective psychosocial intervention strategies to promote reconciliation. In this thesis, we present the characterization of electrophysiological patterns associated with a psychological test that assesses prejudice among former actors in the Colombian armed conflict. This characterization was done in three stages: Analyzing electrophysiological signals in the time domain, analyzing them in the frequency domain using graph theory, and merging electrophysiological features with other domain features to train an interpretable machine learning model. In the first stage, we developed a novel methodology for EEG-ERP analysis based on massive univariate statistical methods and Bayesian inference hypothesis testing. This methodology was used to analyze ERP related to an IAT task designed to assess prejudice, and we found that participants with prejudice toward one (victims) group exhibited higher activity than participants without prejudice or with prejudice toward the other group (ex-combatants). In the second stage, we developed a novel methodology for EEG-based functional connectivity analyses that adopted the techniques currently at the forefront of engineering and incorporated Bayesian inference hypothesis testing. This methodology was used to detect and measure differences among the configuration of the brain networks of former conflict actors; as a result, we found that victims and ex-paramilitaries generate more prejudice against victims, and civilians and ex-guerrillas generate more prejudice against combatants. However, victims and ex-guerrillas regulate more the prejudice against victims, and ex-paramilitaries regulate more the prejudice against combatants. All of these results are consistent with the results of the IAT task. In the third stage, we developed a novel methodology based on global and local analysis of interpretable machine learning models to identify the most important features in the characterization of groups and to evaluate the convenience of reclassifying subjects individually. We used demographic, behavioral, and electrophysiological features to characterize the groups of the former actors. As a result, we found that five characteristics of the 128 evaluated are sufficient to discriminate between groups of actors in armed conflict and to determine whether or not a participant should be reclassified. This research has allowed us to comprehensively characterize the phenomenon of prejudice that persists among former actors of the Colombian armed conflict, which will allow psychologists to design more specific intervention strategies to promote reconciliation among them.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-06T19:33:38Z
dc.date.available.none.fl_str_mv 2024-09-06T19:33:38Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TD
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_db06
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/41900
url https://hdl.handle.net/10495/41900
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 118 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computación
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/87f489cc-7e66-4eb3-a3ae-a0990f7785e7/download
https://bibliotecadigital.udea.edu.co/bitstreams/072e549d-c888-4d61-8d78-d5dfb06e9e70/download
https://bibliotecadigital.udea.edu.co/bitstreams/56b11701-4772-4670-af0a-25eb0916d8b5/download
https://bibliotecadigital.udea.edu.co/bitstreams/7029ff41-ec38-47a8-a535-d850c971cffe/download
bitstream.checksum.fl_str_mv d5ffe806da0f42a286a7736d3649432f
8a4605be74aa9ea9d79846c1fba20a33
c043415cff4e5bbe00f25d8a9e5b59c5
25d1d4517bdce209d85905b13ab69607
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052387912908800
spelling López, José DavidQuintero Zea, AndrésQuiza Montealegre, Jhon JairSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-09-06T19:33:38Z2024-09-06T19:33:38Z2024https://hdl.handle.net/10495/41900ABSTRACT : Colombia has had the most prolonged armed conflict, with the highest number of victims in Latin America. Since the beginning of the century, multiple efforts have been made to de-escalate it, such as the peace agreements with the paramilitaries in 2002 and the FARC guerrillas in 2016. However, efforts to de-escalate the conflict have had mixed results due to persistent prejudices among former actors. Therefore, it is necessary to characterize this prejudice to design more effective psychosocial intervention strategies to promote reconciliation. In this thesis, we present the characterization of electrophysiological patterns associated with a psychological test that assesses prejudice among former actors in the Colombian armed conflict. This characterization was done in three stages: Analyzing electrophysiological signals in the time domain, analyzing them in the frequency domain using graph theory, and merging electrophysiological features with other domain features to train an interpretable machine learning model. In the first stage, we developed a novel methodology for EEG-ERP analysis based on massive univariate statistical methods and Bayesian inference hypothesis testing. This methodology was used to analyze ERP related to an IAT task designed to assess prejudice, and we found that participants with prejudice toward one (victims) group exhibited higher activity than participants without prejudice or with prejudice toward the other group (ex-combatants). In the second stage, we developed a novel methodology for EEG-based functional connectivity analyses that adopted the techniques currently at the forefront of engineering and incorporated Bayesian inference hypothesis testing. This methodology was used to detect and measure differences among the configuration of the brain networks of former conflict actors; as a result, we found that victims and ex-paramilitaries generate more prejudice against victims, and civilians and ex-guerrillas generate more prejudice against combatants. However, victims and ex-guerrillas regulate more the prejudice against victims, and ex-paramilitaries regulate more the prejudice against combatants. All of these results are consistent with the results of the IAT task. In the third stage, we developed a novel methodology based on global and local analysis of interpretable machine learning models to identify the most important features in the characterization of groups and to evaluate the convenience of reclassifying subjects individually. We used demographic, behavioral, and electrophysiological features to characterize the groups of the former actors. As a result, we found that five characteristics of the 128 evaluated are sufficient to discriminate between groups of actors in armed conflict and to determine whether or not a participant should be reclassified. This research has allowed us to comprehensively characterize the phenomenon of prejudice that persists among former actors of the Colombian armed conflict, which will allow psychologists to design more specific intervention strategies to promote reconciliation among them.RESUMEN : Colombia ha experimentado el conflicto armado más prolongado en América Latina, resultando en numerosas víctimas. Los esfuerzos para desescalar este conflicto, incluyendo los acuerdos de paz con los paramilitares en 2002 y con las guerrillas de las FARC en 2016, han tenido resultados mixtos debido a los prejuicios persistentes entre los antiguos actores. Esta tesis se centra en caracterizar estos prejuicios para diseñar mejores intervenciones psicosociales para la reconciliación. El estudio caracteriza los patrones electrofisiológicos asociados a una prueba psicológica que evalúa el prejuicio entre los antiguos actores del conflicto. Involucra tres etapas: análisis de señales electrofisiológicas en el dominio del tiempo, análisis en el dominio de la frecuencia utilizando teoría de grafos, e integración de características electrofisiológicas con otros datos para entrenar un modelo de aprendizaje automático interpretable. En la primera etapa, se desarrolló una nueva metodología de análisis EEG-ERP utilizando inferencia bayesiana para evaluar el prejuicio a través de una tarea IAT. Los hallazgos indicaron mayor actividad cerebral en los participantes con prejuicio contra las víctimas en comparación con aquellos sin prejuicio o con prejuicio contra excombatientes. La segunda etapa introdujo un nuevo método de análisis de conectividad funcional basado en EEG, revelando diferencias en las configuraciones de redes cerebrales entre los antiguos actores del conflicto. Los resultados mostraron que las víctimas y los exparamilitares tenían más prejuicio contra las víctimas, mientras que los civiles y los exguerrilleros tenían más prejuicio contra los combatientes. Además, las víctimas y los exguerrilleros regulaban más eficazmente el prejuicio contra las víctimas, y los exparamilitares hacían lo mismo con los combatientes. En la etapa final, un modelo de aprendizaje automático interpretable identificó características clave para caracterizar y reclasificar sujetos, utilizando datos demográficos, conductuales y electrofisiológicos. Cinco características clave fueron suficientes para discriminar entre grupos y determinar las necesidades de reclasificación. Esta investigación proporciona una comprensión integral de los prejuicios persistentes entre los antiguos actores del conflicto en Colombia, ayudando a los psicólogos a diseñar estrategias de intervención específicas para la reconciliación.COL0010717DoctoradoDoctor en Ingeniería Electrónica y de Computación118 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Electrophysiological Characterization of Prejudice in Actors of the Colombian Armed ConflictTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftFenómenos ElectrofisiológicosElectrophysiological PhenomenaConflicto armadoPrejuicios y antipatíasPrejudices and antipathiesReconciliaciónReconciliationPruebas psicológicasPsychological testsAprendizaje automático (inteligencia artificial)Machine learninghttps://id.nlm.nih.gov/mesh/D055724PublicationORIGINALQuizaJhon_2024_Electrophysiological_Characterization_Prejudice.pdfQuizaJhon_2024_Electrophysiological_Characterization_Prejudice.pdfTesis doctoralapplication/pdf3553919https://bibliotecadigital.udea.edu.co/bitstreams/87f489cc-7e66-4eb3-a3ae-a0990f7785e7/downloadd5ffe806da0f42a286a7736d3649432fMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/072e549d-c888-4d61-8d78-d5dfb06e9e70/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTQuizaJhon_2024_Electrophysiological_Characterization_Prejudice.pdf.txtQuizaJhon_2024_Electrophysiological_Characterization_Prejudice.pdf.txtExtracted texttext/plain100316https://bibliotecadigital.udea.edu.co/bitstreams/56b11701-4772-4670-af0a-25eb0916d8b5/downloadc043415cff4e5bbe00f25d8a9e5b59c5MD53falseAnonymousREADTHUMBNAILQuizaJhon_2024_Electrophysiological_Characterization_Prejudice.pdf.jpgQuizaJhon_2024_Electrophysiological_Characterization_Prejudice.pdf.jpgGenerated Thumbnailimage/jpeg6030https://bibliotecadigital.udea.edu.co/bitstreams/7029ff41-ec38-47a8-a535-d850c971cffe/download25d1d4517bdce209d85905b13ab69607MD54falseAnonymousREAD10495/41900oai:bibliotecadigital.udea.edu.co:10495/419002025-03-26 21:30:47.308https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=